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ABSTRACT

About 20 global climate models have been run for the Intergovernmental Panel on Climate Change (IPCC)

Fourth Assessment Report (AR4) to predict climate change due to anthropogenic activities. Evaluating these

models is an important step to establish confidence in climate projections. Model evaluation, however, is often

performed on a gridpoint basis despite the fact that models are known to often be unreliable at such small

spatial scales. In this study, the annual mean values of surface air temperature and precipitation are analyzed.

Using a spatial smoothing technique with a variable-scale parameter it is shown that the intermodel spread, as

well as model errors from observations, is reduced as the characteristic smoothing scale increases. At the same

time, the ability to reproduce small-scale features is reduced and the simulated patterns become fuzzy.

Depending on the variable of interest, the location, and the way that data are aggregated, different optimal

smoothing scales from the gridpoint size to about 2000 km are found to give good agreement with present-day

observation yet retain most regional features of the climate signal. Higher model resolution surprisingly does

not imply much better agreement with temperature observations, in particular with stronger smoothing, and

resolving smaller scales therefore does not necessarily seem to improve the simulation of large-scale climate

features. Similarities in mean temperature and precipitation fields for a pair of models in the ensemble persist

locally for about a century into the future, providing some justification for subtracting control errors in the

models. Large-scale to global errors, however, are not well preserved over time, consistent with a poor

constraint of the present-day climate on the simulated global temperature and precipitation response.

1. Introduction

To assess future climate changes and the anthropogenic

contribution to global warming, about 20 global climate

models ran scenarios in a coordinated model intercom-

parison targeted for the Intergovernmental Panel on Cli-

mate Change (IPCC) Fourth Assessment Report (AR4).

These models came from various institutions and differ in

their structure. While there is agreement between these

models concerning the anthropogenic contribution to

global warming and some agreement on the projected

future changes, the uncertainty quantification is still prob-

lematic and a consensus on performance metrics for mod-

els is lacking (Tebaldi and Knutti 2007; Knutti et al. 2010b).

Some questions related to model evaluation have rarely

been asked. For example, what is the typical spatial scale at

which models can provide reliable results? Climate scien-

tists have an intuitive feeling for it and use it when inter-

preting results. However, models are also often compared

to observations or other models at the gridpoint scale,

sometimes leading to the conclusion that models do not

even agree on the sign of predicted future changes over

large areas on the globe. This is particularly true for

variables other than temperature, for example, precipi-

tation (see Fig. 10.12 of Meehl et al. 2007b). Evaluating

the models directly on the smallest spatial scale can be

misleading because resolving a feature requires several

grid points at least. Therefore, errors on small spatial

scales can be large even if the models agree better on

larger scales. Apart from this numerical aspect, natural

variability is also an important source of model disagree-

ment. Aggregating changes over larger regions reduces

internal variability (Räisänen 2001) and leads to more

consistent projections across models even for variables

that are difficult to simulate—for example, precipitation

where zonal averaging leads to a more consistent pattern

across the models (Zhang et al. 2007).

While much of the community’s effort goes into im-

proving the models (shown for example by Reichler and

Kim 2008), it is unclear at which scale the models can

provide useful information and agreement with data,

how that scale depends on the variable and projection
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lead time, and whether higher model resolution leads

to more useful information on a smaller spatial scale

(Stainforth et al. 2007). Between the gridpoint scale

where models are less reliable and the global scale that is

of limited use for local projections, a whole range of

spatial scales exists and can be explored. Climate pro-

jections were often aggregated regionally to reduce model

uncertainty (e.g., Tebaldi et al. 2005) but the regions were

chosen in a rather ad hoc way. In the present paper, we

attempt to estimate optimal spatial smoothing scales for

temperature and precipitation in a more formal way by

minimizing a penalty function, which is a combination of

the model’s error to an observation-based dataset and a

measure of spatial information that is lost through aver-

aging. In simple words, the full local information is pro-

vided at every grid point without smoothing, but model

errors and model spread may be large and confidence in

local projections is therefore low. On very large scales,

errors are smaller and models are more likely to agree, but

the information for local impacts is lost and the projection

is again rather useless. Somewhere in between is a regional

to continental aggregation or smoothing (implicit for

example in Christensen et al. 2007) where information

is most likely to be useful and robust against model

assumptions.

We first test the agreement of present-day simulated

climate with observations at different spatial scales.

Then we focus on how model resolution affects model

errors for different areas and scales. Next, we consider

the ratio of the climate change signal to the model dis-

agreement and how smoothing the data affects when

and where models agree on a predicted change. Finally,

we study the persistence of model errors of the initial

period 1960–79 (or equivalently the similarity of two

models in the ensemble) through time and for different

spatial scales in a perfect model approach. This is an im-

portant point since past agreement with observations is

often used to support projections into the future (Stott

and Kettleborough 2002; Giorgi and Mearns 2002, 2003;

Tebaldi et al. 2005; Knutti 2008b,a), that is, it is assumed

that a model that is close to observations in the past will be

close to the real world in its simulated future response.

2. Method

a. Data

This study uses a subset of the data produced for the

World Climate Research Programme (WCRP) Coupled

Model Intercomparison Project phase 3 (CMIP3) (Meehl

et al. 2007a), a coordinated model intercomparison for

the AR4 report of the IPCC. One ensemble member

for each of the 24 atmosphere–ocean general circulation

models (AOGCMs) simulations under the A1B emission

scenario (Nakicenovic et al. 2000) is used.

The observation-based datasets are the 40-yr European

Centre for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis (ERA-40) (Uppala et al. 2005) for surface

temperature and the Climate Prediction Center (CPC)

Merged Analysis of Precipitation (CMAP) (Xie and

Arkin 1997) and the Global Precipitation Climatology

Project (GPCP) (Adler et al. 2003) for precipitation. Each

of these observation-based datasets obviously has its lim-

itations and errors, and they partly rely on models as well,

but still these are probably the best observation-based

datasets available for our purpose. Because individual

models and observations come at different spatial reso-

lutions, the data is interpolated using bilinear interpola-

tion to a common T42 grid (Gaussian grid associated

with spectral truncation, 128 latitudinal by 64 longitu-

dinal grid points). The original data contains monthly

averaged fields from which climatological averages over

periods of 20 yr (annual means) have been extracted.

For future periods where no observations exist, the per-

fect model approach is used in some cases, that is, each

model is treated as reference once and the results are

averaged afterward.

b. Field smoothing

To study uncertainty of models on different spatial

scales, a field-smoothing technique is used. Instead of

evaluating models at the gridpoint scale, the fields are

smoothed by weighted spatial averaging, whereby the

weight wi,j of each point (i, j) decreases exponentially

with the squared distance di,j(k, l) from the original lo-

cation (k, l):

w
i, j

(k, l, l) 5 e�d2
i, j(k, l)/2l2

,

with l being the parameter representing the character-

istic smoothing length scale of the Gaussian weighting.

Therefore, the original data Vk,l is replaced by its smoothed

value Vk,l according to

V
k,l

(l) 5
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w
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,

with I, J being the total number of longitude and latitude

grid points. To characterize how smooth or homogeneous

the climate signal is at a certain location, we introduce

the spatial variation s s(l), which is essentially a standard

deviation of all grid points weighted by wi,j defined above:
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This characterizes the spatial heterogeneity in a region

determined by an area proportional to l2. A large s s in-

dicates that the value at that location is not very infor-

mative about the original spatial details, whereas a small

s s indicates that most points within a distance of about l

are similar, such that not much of the spatial pattern is lost

with smoothing. The parameter l was sampled logarith-

mically between 100 and 10 000 km since most variations

in the field occur at small scales and tend to decrease to-

ward global scales. For illustration, the typical magnitude

of the CMIP3 present-day temperature errors are shown

in Fig. 1 after a small (l 5 100 km) and a medium (l 5

700 km) smoothing. As an alternative to the Gaussian

smoothing, a simple average over grid points is performed

using a step function with weight 1 inside a circular region

of radius l and 0 elsewhere. The difference between the

Gaussian and the step-function smoothing is examined in

the results section.

c. Measures of uncertainty

Three sources of uncertainty have been considered:

1) the model error Ei,j(l) at location (i, j) after smoothing

with a fixed scale parameter l, defined as the absolute

value of the difference between the simulation and a

observation-based set; 2) s s, defined as the spatial stan-

dard deviation of the variable in a given area (see defini-

tion above); and 3) the intermodel spread s m, defined as

the CMIP3 ensemble standard deviation for a grid point

or a region. In a first part, the error and s s are analyzed for

the period 1980–99 (termed present day here). For the

error and this part only, we have subtracted the present-

day global error from all simulated data to account for the

fact that some models have a global warm or cold error

that is not obviously related to their ability to simulate

patterns. In a second part, the evolution of these quanti-

ties over all successive periods of 20 yr between 1960 and

2100 is studied.

d. Optimal smoothing for present-day simulations

One possible way to define an optimal spatial scale for

present day is to use a penalty function that accounts for

both the error and the spatial variation. The optimal spa-

tial scale should consider the error magnitude E and s s

as two independent components of uncertainty. To give

similar relative importance to both quantities, both com-

ponents are normalized with Emax
i, j and s

s,max
i, j , the local

maximum values of Ei,j and s s
i, j across all tested spatial

scales. We define the global penalty function U(l) as

U(l) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
global mean
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The optimal spatial scale lopt,m for a given model m

minimizes U(l). The optimal spatial length for the entire

CMIP3 ensemble is obtained by computing the median

value lopt over all lopt,m. We interpret this optimal

spatial scale as a typical scale on which the model errors

E are reasonably small yet a large portion of the spatial

signal is preserved (small s s indicating that the un-

smoothed values of points nearby are similar to the

smoothed value in the center of the area). The resulting

optimal scale depends on the choice of the normalization

and the definition of the penalty function, which are both

partly subjective, and as a consequence the results should

be interpreted as illustrative (see sections 3b, 4c).

FIG. 1. Effect of (a) weak (l 5 100 km) and (b) medium (l 5 700 km) field smoothing on the average magnitude of the temperature error

of the CMIP3 ensemble for the period 1980–99. With smoothing, some details are lost but the average error is smaller.
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e. Impact of resolution on model error

Larger computational capacities are often justified with

the need for higher resolution. It is assumed that a model

run at a higher spatial resolution will provide more reli-

able information than a model run at a lower resolution.

We test this assumption by doing a regression of the

error against the resolution for different smoothing val-

ues. This is particularly interesting for strong smoothing,

as it answers whether higher resolution (in addition to

resolving smaller features) also improves the simulation of

the large-scale pattern. Resolution is defined here as the

typical edge length of a grid cell, calculated as the square

root of the earth surface after dividing by the number of

grid cells.

f. Robustness of climate change signal

To assess the strength of the predicted climate change

signal compared to s m, the ensemble robustness ratio R is

defined:

R
ij
(l) 5

DV
i, j

(l)

s m
i, j (l)

�����
�����.

This ratio is defined as a function of the location (i, j) and

l, with DV being either the smoothed field of temperature

or precipitation change (based on the multimodel mean

value). As proposed by Murphy et al. (2004), the climate

change signal is considered robust if the absolute value of

the ratio is larger than 2, that is, the predicted climate

change signal is at least twice as large as the uncertainty

across models.

g. Initial error preservation

Models are often evaluated and calibrated toward an

observation-based dataset with the hope that this would

ensure skill for a prediction. But do the initial model

errors during 1960–79 also explain the errors in the future?

Is a good model for the present day still good in the future,

and on what spatial scale is this relationship strongest? We

examine these questions with the help of a perfect model

approach. As the global error of the initial period 1960–79

dominates the future error signal at all spatial scales, we

subtract it from the data. This is justified since the focus

lies rather on the spatial error pattern generated after

1960–79. The relation between initial and future errors

and simulated change and the role of the spatial scale is

studied by a squared correlation index I(t, l) as a function

of smoothing scale and projection lead time. For a given

time period t and l the following squares r2 of the cor-

relation value are calculated at each grid point and then

globally averaged:

I
(1)
i, j (t, l) 5 r2[E

i, j
(1960� 1979, l), E

i, j
(t, l)] and

I
(2)
i, j (t, l) 5 r2[E

i, j
(1960� 1979, l), C

i, j
(t, l)],

with Ei,j being a vector of the 23 error values for a certain

time, smoothing, and grid point (i, j). The length of the

vector is 23 and is equal to the number of CMIP3 models,

24, minus one model that serves as reference to calculate

the error. This perfect model approach is repeated 24

times so that each model is used as reference once. The 24

possible I(t, l) are then averaged and return a single re-

presentative fraction of explained variance for a certain

time period and smoothing. Here, Ci,j is the difference

between the simulated variable change (temperature or

precipitation) of two models for a certain time, smooth-

ing, and grid point. We assume the relations to be linear.

The squared correlation coefficient thus equals the frac-

tion of explained variance under the hypothesis that the

predicted variable is normally distributed at any pre-

dicting value (von Storch and Zwiers 2004, section 8.2.4).

This hypothesis is met by the distributions of the pro-

jected error magnitudes among the 23 simulations. As the

fraction of explained variance is an additive value, I
(1)
i, j and

I
(2)
i, j can be globally averaged for a given t and l. The

quantity I(1) therefore measures the fraction of future

error in the variable that is explained by the initial error

during 1960–79 (control error), while I(2) measures the frac-

tion of error in the variable change (i.e., the simulated

difference rather than the variable itself) that is explained

by the initial error during the reference period 1960–79.

In other words, I(1) describes the persistence of the initial

errors over time, whereas I(2) describes the relation be-

tween initial errors and trend errors. High fractions of

explained variance in I(2) indicate that the mean state

climate for the present-day period is a good indicator for

the model consistency in the future—that is, two mod-

els with a similar present-day state will simulate similar

changes, and therefore a model close to the present-day

climate of the real world would hopefully produce an ac-

curate prediction of the changes of the real world.

3. Results

a. Field smoothing and measures of uncertainty

In a first step, the error and s s (absolute values aver-

aged over space) are quantified for present-day simula-

tions at various smoothing scales and for each model. The

largest errors compared to the observation-based dataset

are found at the smallest tested smoothing (l 5 100 km,

essentially equivalent to no smoothing) for all models.

As shown in Fig. 2, the errors decrease monotonically and

all curves converge to zero as l increases. Note that the
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global error was initially subtracted. For precipitation

the error reduces faster than for temperature and even

a weak smoothing significantly improves the agreement

with observation.

The ranking of the models (from the error point of

view) depends on the spatial scale considered. In general,

a model performing well on small scales tends to also

perform well after smoothing while the opposite is not

necessarily true. Because the models get more and more

similar with increasing spatial scales, performing well

at large scales does not guarantee good agreement with

the observation-based dataset at smaller scales. A more

detailed study of how such model rankings evolve over

time is given later in section 3e. Two observational da-

tasets (CMAP and GPCP) are available in the case of

precipitation. If one reference is treated as the true data and

the other serves as an additional model, the best performing

model at local scales is the alternative observation-based

dataset. However, that is not true at large scales. In the case

of CMAP being the reference, GPCP is even among the

five worst models. Not surprisingly, both datasets differ

from all models on small scales because the models are

unable to resolve some small-scale patterns, while this does

not seem to hold for large scales. Without judging which

observation-based dataset is more realistic, this analysis

highlights that observational uncertainty in variables other

than temperature may be large and should be considered

when developing metrics for model evaluation.

In contrast to the error, s s is monotonically increasing,

as shown in Fig. 3. For the smallest smoothing, s s is near

FIG. 2. Global average of the absolute value of the error as function of l, for each CMIP3 model. (a) Temperature

(ERA-40 as reference) and (b) precipitation (CMAP as reference) for the period 1980–99. Smoothing the data

reduces the error between simulation and observation.

FIG. 3. Global average of ss as function of l for each CMIP3 model and for (a) temperature and (b) precipitation

for the period 1980–99. The spatial variation is defined as the spatial standard deviation of the variable within

a given spatial area. The larger the spatial scale, the larger the standard deviation of the variable encompassed by

the smoothing.
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zero because the standard deviation over all points gives

virtually no weight to neighboring points. At large scales,

it converges to a constant value representing the standard

deviation across all grid points. For temperature data, the

curves are approximately constant above 6000 km while

for precipitation they stabilize earlier at 4000 km.

Because different smoothing techniques are likely to

produce different results, the Gaussian smoothing and

a simple average over neighboring grid points using a step

function (see section 2b) are compared. Figure 4 shows

the typical CMIP3 global average E and s s as function of

the spatial length. Both techniques return the same values

at the grid point and the global spatial scales. The largest

difference is the rate of change, which is faster in the case

of the Gaussian smoothing. The step-function smoothing

shows irregularities between 0 and 1000 km as a hard

threshold is more likely to create artifacts when moving

across mountain ranges or coastlines. The qualitative

behavior, however, is similar.

Figure 5a shows that s m (measured as the standard

deviation across all models after smoothing and repre-

senting model dissimilarities) is larger at local scales and

can be reduced with a stronger smoothing, as in the case

of the error. At local scales, s m over time remains rela-

tively constant. At large scales, however, s m is smaller

but clearly increases with time. The reason is that global-

scale dissimilarities are related to the transient tempera-

ture change and evolve with the same magnitude as the

global error (Knutti et al. 2008). The local dissimilarities,

however, are less related to global warming and domi-

nated by model errors, and thus almost time independent.

The reduction of s m for precipitation occurs more rap-

idly than for temperature, similar to the case of the error

(see Fig. 5b). In contrast to temperature, the precipitation

FIG. 4. Gaussian (solid line) vs step-function (dashed line) smoothing for (a),(c) surface temperature and

(b),(d) precipitation applied to the typical CMIP3 global average error (a),(b) magnitude and (c),(d) spatial

variation.
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s m does not change much over time at any of the tested

scales because the precipitation trends are rather small

compared to the model dissimilarities.

b. Optimal smoothing for present-day simulations

The optimal smoothing that minimizes the root-mean-

square value of Ui,j(l) indicates an approximate scale

where the error is reasonably small through spatial av-

eraging, yet most of the local climate pattern is preserved.

The results for different regions and smoothing tech-

niques range between 185 and 2080 km and are shown in

Table 1. The step-function smoothing produces optimal

scales about 2 times larger than the Gaussian smoothing

but the results are qualitatively similar. The reason is that

the step function eliminates all influences from grid points

farther away than l whereas the Gaussian gives nonzero

weight even to very remote points. In general, the tem-

perature field allows a larger smoothing than the precip-

itation field because the spatial variation for temperature

is smaller. This is even more pronounced in the tropics for

convective precipitation, where the spatial variation is

much larger than the error magnitude, leading to an op-

timal smoothing close to the gridpoint scale. As the choice

of the penalty function is partly subjective, we have in-

vestigated two other definitions. For example, if the error

and the spatial variation are simply added without nor-

malization, s s quickly dominates E and the gridpoint

scale is the optimal choice. Different applications may

require different weighting in the penalty function. Rather

than defending any particular choice of a penalty func-

tion, the idea here is to demonstrate the two opposing

trends of model error and spatial variation. Trying to

minimize both of these components implies a typical

length scale over which the model results should be ag-

gregated; that the length scale is larger for temperature

than for precipitation globally, is larger for temperature

in the tropics, is larger for precipitation in the extra-

tropics, and is larger for temperature over ocean than

over land. These general conclusions should be robust

against different definitions of the penalty function, pro-

vided that an optimal scale exists.

c. Impact of the resolution on model error

The correlation between error and model resolution

(i.e., the original resolution at which the model is run,

not the smoothing scale) is an indication of the benefit of

higher resolution in representing current climate. In the

case of precipitation, correlations between error and res-

olution were lower than 0.5 and the regression slopes were

never statistically significant using the F test with a 0.05

significance level, thus no clear relation seems to exist

at least within the relatively narrow range of resolutions

covered by CMIP3. In Fig. 6a, a scatterplot of the relation is

shown for temperature at the gridpoint scale (l 5 100 km),

FIG. 5. Intermodel spread representing the model dissimilarities, globally averaged and as a function of l for

(a) temperature and (b) precipitation for different time periods from 1960 to 2080. Models tend to show smaller

dissimilarities at larger spatial scales.

TABLE 1. Optimal smoothing length (km) for surface air tem-

perature (TAS) and precipitation (PR) for various regions using

the Gaussian or the step-function smoothing.

Region

Gaussian Step function

TAS PR TAS PR

Global 695 207 1280 428

Tropics 1130 162 2340 428

Extratropics 428 1130 886 2080

Land only 428 207 886 428

Ocean only 886 185 1440 428
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considering the whole globe (land and oceans). At this

scale, the error is reduced from about 1.5 to 1 K from the

coarsest to the highest resolution. The slope of the re-

gression line characterizes the strength of the relation

between the resolution and the error and is calculated

for all spatial scales, global, land, and oceans. The

Flexible Global Ocean–Atmosphere–Land System Model

(FGOALS) model is a clear outlier and is excluded for

this part of the analysis. The linear regression slopes

are displayed in Fig. 6b and are always statistically

significant using the same test as before. Not surpris-

ingly, the benefit of high resolution is largest at the

smallest scales and over land, where the topography is

more complex and higher resolution can probably resolve

more local processes. However, the benefit of the res-

olution quickly decreases with smoothing approaching

500 km. At scales above about 500 km, the slope de-

pendence on l is similar in all cases.

d. Robustness of climate change signal

We define R as the absolute value of the ratio of the

climate change to s m. The geographic distribution of the

robustness at the gridpoint scale (l 5 100 km) is first

shown in the maps in Fig. 7 for the end of the century as

an example. A striking but well known feature is that

temperature changes are clearly more robust than pre-

cipitation (Räisänen 2001). While temperature robust-

ness is especially weak in the North Atlantic and over the

FIG. 6. (a) Relation between absolute value of the temperature error (globally averaged) at the gridpoint scale (l 5

100 km) and native model resolution. The linear regression is indicated by a red line (with the FGOALS model

excluded). (b) Regression slope vs l for land or ocean only and the entire globe. Whereas a higher resolution

improves performance at local scales, its impact at large scales is limited. In the case of precipitation, no relation

between resolution and error could be established.

FIG. 7. Maps of R for the 2080–99 climate change signal since 1960–79 at the gridpoint scale (l 5 100 km) for (a) temperature and

(b) precipitation. The climate change signal is said to be robust if R is larger than 2.
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Southern Ocean where some models indicate cooling

while most show warming, the models agree for the rest of

the globe. Precipitation simulations show good agreement

over high latitudes and the Mediterranean Sea. The tem-

poral and spatial behavior of R is depicted in Fig. 8. Not

unexpected and in agreement with detection/attribution

and future projection studies (Barnett et al. 2005; Meehl

et al. 2007b), the temperature signal is robust at all scales

after a few decades and clearly exceeds s m. In contrast,

simulated precipitation changes agree about 50 years later

and on continental scales only, both because of larger

model differences and large interannual variability.

e. Initial error preservation

The global average of the explained variance fractions

between initial and future model errors I(1)(t, l) is

shown in a contour plot in Fig. 9 as function of time and

spatial scale. The time axis is divided into 12 intervals

between 1960 and 2099. For both temperature and

precipitation the fraction of explained variance is high at

FIG. 8. Profiles of R for the climate change signal since 1960–79 (globally averaged) for (a) temperature and

(b) precipitation. Here, R is defined to be robust above the dashed line where the signal is twice as large as the

standard deviation characterizing the intermodel spread. While temperature simulations are mostly robust every-

where, precipitation only gets robust later and for continental or large scales.

FIG. 9. Preservation of the initial errors among the models through time and spatial scales, defined as the fraction of

variance of the future errors that is explained by the initial model errors in 1960–79 (globally averaged). The time axis

is divided into 12 intervals between 1960 and 2099. The perfect model approach was used here for (a) temperature

and (b) precipitation. Values near 1 indicate that differences between models strongly persist over time, while values

near 0 indicate no relation between differences at the beginning and the end of the simulation.
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local scales until the end of the twenty-first century. At

that time and at larger scales, however, the fraction of

explained variance vanishes. The decay of the fraction of

explained variance with time is slower at local scales than

at large scales. In agreement with Giorgi and Mearns

(2002) and Räisänen (2007), a linear regression between

initial and future model errors for scales and periods

exhibiting a high correlation yield regression slopes very

close to one, supporting the conclusions that initial dif-

ferences between models are well preserved over time,

in particular on small scales. The relation I(2)(t, l) between

initial model differences and trend errors was also ana-

lyzed. In contrast to the case before, only very small

correlations are seen for either temperature or pre-

cipitation (not shown). Therefore, the initial error seems

to relate only weakly to simulated future trends. The in-

terpretation of these results is given in section 4.

4. Discussion

a. Data

Regarding the data, we have used the A1B scenario

for the analysis of future projections, but the choice of a

specific scenario should not impact the presented results

because the ratio of temperature change to forcing is

approximately constant across scenarios (Knutti et al.

2008; Gregory and Forster 2008) and simulated patterns

tend to be similar for all scenarios (e.g., Meehl et al. 2005;

Washington et al. 2009; Meehl et al. 2007b). The number

of runs available for each model varies from one to nine

but very few models have more than five runs. We selected

arbitrarily the first run in the list. This choice is not critical

since internal variability after averaging the data on 20 yr

is relatively small in comparison to intermodel differences.

Choosing periods of 20 yr is a compromise between hav-

ing enough data inside a period to avoid too much internal

variability and having enough periods to cover the ob-

servation period between 1960 and 2000. Averaging ini-

tial condition ensemble members only for some of the

models would inappropriately reduce variability for some

models. The model evaluation was only done for tem-

perature and precipitation, but of course other important

fields such as sea level pressure would be important to

consider for a more complete study.

b. Measures of uncertainty

The magnitude of the error rather than error itself has

been chosen for the analysis, because part of the multi-

model error gets canceled in a multimodel mean (Räisänen

2007) and the tendency of the error magnitude to decrease

with increasing smoothing is masked. Our results suggest

that smoothing the data before the model evaluation re-

duces the disagreement between the models and an ob-

servational dataset, in particular in the case of a variable

that is difficult to simulate and locally heterogeneous, such

as precipitation. This does not ignore the weaknesses of

the models but may help to focus on features that are

relevant at a certain spatial scale. Two datasets were used

to evaluate precipitation, and it is interesting that on larger

scales the similarity between some models and one dataset

is larger than the similarity of the two datasets. For small

scales, the two datasets are similar and all models are

different because the models all share similar limitations

in parameterizing or discretizing physical processes

(Tebaldi and Knutti 2007; Knutti et al. 2010b) and are

unable to correctly capture certain small-scale patterns

in precipitation.

As model errors decrease when results are aggregated

on larger scales, grid points from more climatic regimes

are averaged together and the uncertainty related to s s

increases. The information provided by the models gets

blurred and the simulation signal is less precise than at the

gridpoint scale. Similar to the error, s m for precipitation

is reduced faster by smoothing than for temperature. This

is because precipitation differences are dominated by

small-scale features whereas temperature differences

vary at larger spatial scales. Although s m for temperature

is lowest at large scales, it increases faster with time at

large scales owing to the different transient warming rates

of the models. The case of precipitation is interesting

because s m is almost constant in time at each tested spa-

tial scale. The reason is that precipitation changes are only

on the order of a few percent and can be of opposite sign

in nearby areas and therefore get partly averaged out at

larger spatial scales. On the other hand, simulated precip-

itation in the baseline climate can easily vary by a factor of

two locally, so s m is dominated by the climatological errors

at all times.

c. Optimal smoothing for present-day simulations

Combining the error and s s into an overall penalty

function where the error is substantially reduced yet the

main spatial patterns are still preserved is possible but

the results depend on the definition adopted. Our results

suggest that there are different optimal scales, depend-

ing on which variable is analyzed as well as which region

is considered. From a numerical perspective several grid

points are needed to discretize the partial differential

equations governing the climate models. Therefore, in-

terpreting scales smaller than at least several grid points

is dangerous because of numerical instabilities and er-

rors generated. It is interesting to compare the optimal

scales obtained here with the choices made in publica-

tions that aggregate regional climate change (e.g., Giorgi
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and Francisco 2000; Tebaldi et al. 2005; Christensen et al.

2007; Mahlstein and Knutti 2009). Many of these studies

provided regional averages over 26 land regions. If we

divide the total land area by 26 and take the square root

of that (corresponding to the length and width of a region

if the land was divided into 26 regions of equal area), we

find characteristic length scales of about 2400 km, larger

than those obtained here with the Gaussian smoothing

but in closer agreement with the step-function scales. We

argue that climate scientists may in fact often choose re-

gions and scales based on a similar informal optimization

procedure, trying to maximize the regional detail (e.g.,

for impact studies). But knowing that errors and s m are

largest at local scales, they aggregate results into regions

encompassing multiple grid points. Of course, other as-

pects such as the communication of the results play an

important role, and the optimal spatial scales found in this

analysis should be seen as an approximate estimate that

depends on the location, the variable, the temporal and

spatial variability, as well as the uncertainty in the ob-

servation. Different definitions of a penalty function and

an optimal spatial scale are possible, and the one chosen

here should be interpreted as an illustration that provides

insight into how different quantities depend on the spatial

scale, rather than as a definitive answer.

d. Impact of resolution on model error

The resolution of models is correlated with their

performance in simulating temperature but apparently

not precipitation (at least in the CMIP3 ensemble). This

might be because resolving some processes related to

clouds and precipitation would require much higher

resolution than any of the global models currently have.

Alternatively, it might also be that higher-resolution

models produce precipitation with higher geographical

variability. Since the precipitation field is more variable

than temperature, a simple shift in precipitation pattern

could penalize the model performance. High-resolution

models have the clearest advantage in reproducing cur-

rent temperature over land, on scales between local and

500 km, partly because of a better representation of the

topography. The globally averaged error is reduced from

about 1.5 to 1 K from the coarsest to the highest resolved

models at the smallest scale, where the relation is stron-

gest. However, given the cost of higher resolution, the

benefit may be seen as rather small. As already noted by

Santer et al. (2009), the Canadian Centre for Climate

Modelling and Analysis (CCCma) Coupled General Cir-

culation Model, version 3.1 (CGCM3.1) and the Japanese

Model for Interdisciplinary Research on Climate version

3.2 (MIROC3.2) were both run at higher- and lower-

resolution configurations, but despite the use of higher

resolution the error was not much reduced. For some

variables, a higher resolution may eliminate a parameter-

ization and allow direct dynamical computations instead.

In the ocean, for example, a lot of energy is contained in

small-scale eddies. Therefore, the relation between reso-

lution and sea surface temperature might be stronger than

for surface air temperature. In general, it is not easy to

separate the effects of higher resolution and a more com-

prehensive representation of processes. The groups run-

ning models at highest resolution are often also those with

the longest experience in building models and with the

largest number of people developing the model (of course

resolution can be changed, but each model has one or a

few standard resolutions that are commonly used and for

which it has been optimized). So resolution, rather than

just a numerical property, should probably be seen more

as an indicator of overall sophistication, effort, computing

power, and financial resources going in a model.

e. Robustness of climate change signal

Maximizing R is desirable and is likely to improve

with newer climate models generations. A closer look at

Fig. 8b for precipitation compared to Fig. 10.12 of Meehl

et al. (2007b) summarizes the benefit of this study: if

models are compared at the gridpoint scale they do not

agree in their trends over large areas on the globe, whereas

our study shows that they do but only for regions with

4000 km as typical scale and trends beyond the period

2050–69. Trends are relatively weak and local precipi-

tation is difficult to simulate, therefore larger regions are

needed to detect the precipitation change signal and sim-

ulate robust trends, consistent with the results of the pre-

cipitation attribution study by Zhang et al. (2007). Note

that even if the global average of the robustness is below a

given threshold, there are of course regions where the

robustness is high. For example, the simulated increase in

precipitation in high northern latitudes is significant and

robust even at small scales and in the near future.

f. Initial error preservation

The climatological errors in mean temperature and

precipitation in temperature and precipitation in the

CMIP3 models are surprisingly constant over time, in

particular on small scales. This error preservation van-

ishes toward the end of the century at large scales, indi-

cating that differences in climate change have a larger

scale than the differences in error magnitudes. This is

consistent with the fact that climatological errors and

simulated changes are weakly correlated (Murphy et al.

2004; Knutti et al. 2006, 2010b). Local errors are more

likely to be the result of deficiencies in simulating par-

ticular processes that are important locally (e.g., not re-

solving a mountain range), and these are usually more

persistent over time. The fraction of explained variance

2690 J O U R N A L O F C L I M A T E VOLUME 24



between initial and future errors is larger for precipitation

than for temperature, which may seem surprising at first

since precipitation is more difficult to simulate. The rea-

son for this persistence is that changes in precipitation are

quite small in many regions compared to the control er-

rors. Therefore, future errors are essentially a sum of

initial errors plus some trend, with the former dominating

the latter. The result is that two models having similar

errors in their initial state will tend to have similar errors

in the future at the same location.

The lack of correlation between the initial errors and

future trends errors is rather disturbing. It is commonly

assumed that models with small initial error are more

accurate in predicting future trends (e.g., IPCC AR4

Frequently Asked Questions (FAQ) 8.1, Randall et al.

2007]. But reality suggests otherwise, as shown by the lack

of correlation between past or future predicted warming

with present-day simulated temperatures (Tebaldi and

Knutti 2007; Jun et al. 2008; Knutti et al. 2010b; Weigel

et al. 2010). As a consequence, knowing the discrepancy

between present-day simulations and observations of the

mean climate state does not immediately help to con-

strain the estimation of future trend error. On the other

hand, there is clear evidence and physical reasons for a

relation of past greenhouse gas attributable warming and

future warming (e.g., Stott and Kettleborough 2002).

Clear relations also exist for local processes, for example,

a correlation between past and future sea ice loss in the

Arctic (Boé et al. 2009). These points are important to

keep in mind when weighting the models for the future

projections, with weights based on performance in the

past (Knutti et al. 2010a; Knutti 2010).

5. Conclusions

Although small spatial scales are most important to

determine specific climate impacts, this is precisely the

scale where climate is most difficult to simulate and where

model errors and intermodel spread are largest. Climate

scientists therefore often aggregate data to regions where

the above problems are less severe, even though some

spatial information gets lost in those processes. Here, we

have done this in a formal way and have demonstrated

how the spatial variation s s, the model spread s m, the

model error in climatology, and the persistence of errors

depend on the spatial scale of averaging. We have shown

that the error and the intermodel spread can be signifi-

cantly reduced by smoothing the data (consistent with

earlier results by Räisänen 2001), however, at the price of

losing spatial detail (expressed in our case as an increase

in the spatial spread).

Our results support typical scales between the gridpoint

and 2000 km depending on the variable, the location, and

the smoothing technique. Although there are of course

various definitions of an optimal scale for different prob-

lems, we suggest that some form of spatial aggregation

should be considered to provide a more robust estimate of

climate change.

Our analysis also reveals that model resolution in

CMIP3 seems to only affect performance in simulating

present-day temperature for small scales over land. Results

may differ for other quantities, but given the limited ad-

vantages of high resolution even for reproducing present-

day climate, we speculate that pushing model resolution

alone is unlikely to improve future predictions and reduce

uncertainties, unless a more complete understanding of the

physical and biogeochemical process is incorporated and

the models are recalibrated. This is consistent with the fact

that uncertainties in climate projections have not de-

creased significantly in the last decade despite massive

computational advances allowing for higher model reso-

lution. As a consequence, regional high-resolution models

and downscaling may provide greater spatial detail but

not necessarily higher confidence in local projections to

determine the impacts of climate change.

Finally, we have shown that the initial model errors of

1960–79 persist over time in particular at small spatial

scales, justifying to some extent the common practice of

focusing on anomalies from a control simulation rather

than absolute values (although that is unlikely to work well

for more complicated quantities, see Buser et al. 2009). In

agreement with earlier studies, there is a lack of correla-

tion between straightforward measures of initial errors

and future trends. We have shown the difficulty in relating

model skill based on present-day climatological errors (as

characterized by Reichler and Kim 2008) to prediction

skill in the future, whatever spatial scale is chosen.
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