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ABSTRACT

Climate projections have been remarkably difficult to constrain by comparing the simulated climatological

state from different models with observations, in particular for small ensembles with structurally different

models. In this study, the relationship between climate sensitivity and different measures of the present-day

climatology is investigated. First, it is shown that 1) a variable proposed earlier that is based on interannual

variation of seasonal temperature and 2) the seasonal cycle amplitude are unable to constrain the range of

climate sensitivity beyond what was initially covered by the ensemble. Second, it is illustrated how model

calibration helps to reveal potentially useful relationships but might also complicate the interpretation of

multimodel results. As a consequence, when ensembles are small, when models are neither independently

developed nor structurally identical, when observations are likely to have been used in the model de-

velopment and evaluation process, and when the interpretation of the relationships across models in terms of

well-understood physical processes is not obvious, care should be taken when using relationships across

models to constrain model projections. This study demonstrates the pitfalls that might occur if emergent

statistical relationships are prematurely interpreted as an effective constraint on projected global or regional

climate change.

1. Introduction

General circulation models (GCMs) are tools that can

be used to understand climate processes and to make

climate projections for the next decades to centuries. The

discretization of the equations of motion on a grid is

subject to several choices (resolution, numerical schemes,

hardware and software, etc.) and the need for parame-

terizations leads to structural differences and uncer-

tainties that are difficult to explore fully by perturbing

parameters in a single model (Knight et al. 2007;

Stainforth et al. 2007) . Yet such perturbed physics en-

sembles (PPEs) have undoubtedly been an interesting

playground over the past years to test ideas on how

model parameters can be constrained by observations

and to study methodological issues. The availability of

many ensemble members with perturbed parameters

has led to a variety of studies exploring, in particular, the

relationship between metrics of the present-day climate

that can be observed, and climate sensitivity (the global

mean equilibrium surface warming for a doubling of the

atmospheric carbon dioxide concentration) as a rough

proxy for the magnitude of climate change predicted by

a model (Knutti et al. 2006; Piani et al. 2005; Sanderson

et al. 2008b,a, 2010; Stainforth et al. 2005). However, it is

becoming increasingly clear that many (if not all) per-

turbed versions of a particular base model can share

certain structural similarities (Collins et al. 2011;

Masson and Knutti 2011), and relationships derived

from a PPE may be different in other structurally dif-

ferent models (Sanderson 2011; Sanderson and Shell

2012; Yokohata et al. 2010). Thus, establishing re-

lationships between observables and predictions that

are valid across a range of structurally different models

is important. At present, the data from phase 3 of the

Coupled Model Intercomparison (CMIP3; Meehl et al.
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2007), collected for the Intergovernmental Panel on

Climate Change (IPCC) Fourth Assessment Report

(AR4; Solomon et al. 2007), forms the largest and most

complete group of structurally different global models.

However, this ensemble contains only 24 different

models, and these models are not totally independent

(Jun et al. 2008a,b; Masson and Knutti 2011). A number

of studies have pointed out the difficulty of finding ro-

bust and strong relationships between observables and

predictions in CMIP3 (Jun et al. 2008a,b; Knutti 2010;

Knutti et al. 2010a,b; Raisanen et al. 2010). Notable

exceptions, where the relationships are quite clear and

the physical processes are well understood, include the

high-latitude albedo feedbacks, the climate of the Arc-

tic, and the decline in Arctic sea ice (Boé et al. 2009c,b,a;

Mahlstein and Knutti 2011, 2012). Several studies have

also attempted to constrain climate sensitivity from

the CMIP models (Huber et al. 2011; Shukla et al. 2006;

Wu and North 2003; Wu et al. 2008). In most cases, the

observationally-constrained range is similar to the cli-

mate sensitivities originally covered by the models. One

issue in using CMIP-type ensembles is that the effective

number of independentmodels ismuch smaller thanwhat

the ensemble suggests (Annan and Hargreaves 2011; Jun

et al. 2008a,b; Masson and Knutti 2011). The difficulty of

finding robust relationships in a high-dimensional output

space with only a dozen or so models in the sample is

obvious, and the danger of screening predictors has been

pointed out (DelSole and Shukla 2009). In this study, we

analyze relationship between temperature interannual

variability, the seasonal cycle, and the mean climate state

on the one hand, and climate sensitivity on the other hand

in both the structurally different models of CMIP3 and

two perturbed physics ensembles of the Hadley Centre

model.Wedemonstrate that such relationshipsmay differ

across ensembles, andmay be related to whether and how

the ensemble is constrained with observations.

2. Models and data

The data consist of simulated and observed monthly

surface air temperature fields from preindustrial control

experiments with no external forcing. Three sets of fully

coupled ocean–atmosphere GCMs are used in this

study. The first set belongs to phase 3 (Meehl et al. 2007)

of the World Climate Research Program (WCRP)

Coupled Model Intercomparison, a coordinated project

to gather and compare about 24 different GCMs for the

IPCC AR4 (Solomon et al. 2007). The second set is the

Atmosphere–Ocean PPE model ensemble with per-

turbed atmospheric parameters (AO-PPE-A) from the

‘‘QuantifyingUncertainty inModel Predictions’’ (QUMP)

experiment, which was generated by perturbing the

atmospheric parameters of the third climate configura-

tion of theMet Office UnifiedModel (HadCM3; Collins

et al. 2011). This ensemble (simply referred as the

‘‘QUMP ensemble’’ in this publication) contains 17

simulations that do not result from a random perturba-

tion of a base model but are constrained by climatology

(Murphy et al. 2004; Webb et al. 2006) in much the same

way that CMIP3 is designed to agree reasonably well

with observations. The third ensemble is known as the

climateprediction.net (CPDN) ensemble and consists of

several thousand simulations that were designed to ex-

plore parametric uncertainty in a single model (Frame

et al. 2009; Rowlands et al. 2012). More than 50 pa-

rameters of the HadCM3L coupled model (the HadCM3

model with a reduced ocean resolution) were perturbed

in a range determined plausible by experts. All pre-

industrial control runs with at least 160 simulated years

were selected. This includes the HadCM3L coupled

model experiment and the British Broadcasting Corpo-

ration (BBC) Climate Change Experiment (Frame et al.

2009). In total, 4846 CPDN simulations were used.

In contrast to CMIP3 and QUMP, this ensemble is not

strongly constrained by observations.

The observation-based datasets for surface air temper-

ature are the 40-yr European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-40;

Uppala et al. 2005), the National Centers for Environ-

mental Prediction (NCEP)–National Center for Atmo-

spheric Research (NCAR) reanalysis (Kalnay et al. 1996),

the third revision of the Hadley Centre Climatic Research

Unit instrumental temperature records (HadCRUT3)

(Brohan et al. 2006), and the Modern-Era Retrospective

Analysis for Research and Applications (MERRA)

(Rienecker et al. 2011). Because individual models and

observations come at different spatial resolutions, the

data are bilinearly interpolated to a common T42 grid

(i.e., a Gaussian grid associated with spectral truncation

having 128 latitudinal by 64 longitudinal grid points).

A direct calculation of the CMIP3 climate sensitivity

values is computationally expensive because the climate

system has to reach a thermal equilibrium. Rather than

simulating a fully coupled transient evolution of the

ocean, which takes several centuries to equilibrate with

the surface forcing, a more efficient method is to use an

atmospheric GCM coupled to a slab ocean, which

yields a slab ocean equilibrium climate sensitivity. An-

other method regresses the radiative flux at the top of

the atmosphere against the global average surface

temperature change to produce an ‘‘effective climate

sensitivity’’(Gregory et al. 2004). To maximize the

number of available climate sensitivity values, the cli-

mate sensitivity definition used here for the CMIP3

ensemble is the mean value of the two methods (or one

888 JOURNAL OF CL IMATE VOLUME 26



of the methods if only one is available). The results do

not depend on this choice. Finally, the CPDN equilib-

rium climate sensitivity values were estimated for 152

physics perturbation categories from a separate en-

semble slab model experiment (i.e., using the atmo-

spheric GCM coupled to a slab ocean; Stainforth et al.

2005). Hence, the number of possible climate sensitivity

values is much less than the ensemble size. This is due to

the setup of the BBC Climate Change Experiment,

which contains, for example, several ocean and forcing

versions for the same atmospheric perturbation set.

While these permutations do not affect the value of the

climate sensitivity much, they impact other properties

such as interannual variability. Table 1 summarizes

which GCMs have been used, the length of their control

simulations, and their climate sensitivity values. The

CPDN dataset is not used in all calculations, since some

output fields are not available at the required resolution.

Note that the uncertainties in estimating climate sensi-

tivity from the short CPDN simulations are significant.

3. Constraining climate sensitivity from observed
interannual variability

We start with a constraint on future climate change

that was based on temperature variability and was sug-

gested a few years ago. Natural variability is a crucial

variable for detection and attribution studies of climate

change (Barnett et al. 2005; Wigley et al. 1998), and cli-

mate model development is often focused as much on

TABLE 1. List of the GCMs used, the length of their control simulations, and their climate sensitivity. See the text for more details.

Model Length (yr)

Climate

sensitivity (K)

Canadian Centre for Climate Modelling and Analysis (CCCma)

Coupled General Circulation Model,

version 3.1 (cccma_cgcm3_1)

1001 3.21

CCCma CGCM 3.1, T63 resolution (cccma_cgcm3_1_t63) 350 3.4

Centre National de Recherches Météorologiques (CNRM) Coupled Global

Climate Model, version 3 (cnrm_cm3)

500 2.45

Commonwealth Scientific and Industrial Research Organisation (CSIRO)

Mark, version 3.0 (csiro_mk3_0)

380 2.65

Geophysical Fluid Dynamics Laboratory (GFDL) Climate Model,

version 2.0 (gfdl_cm2_0)

500 2.62

GFDL Climate Model, version 2.1 (gfdl_cm2_1) 500 2.84

Goddard Institute for Space Studies (GISS)

Model E-H (giss_model_e_h)

400 2.87

GISS Model E-R (giss_model_e_r) 500 2.63

Institute of Atmospheric Physics (IAP) Flexible Global

Ocean–Atmosphere–Land System

(FGOALS) Model, gridpoint version 1.0 (iap_fgoals1_0_g)

350 2.13

Institute of Numerical Mathematics Coupled Model (INCM),

version 3.0 (inmcm3_0)

330 2.19

L’Institut Pierre-Simon Laplace (IPSL) Coupled Model,

version 4 (ipsl_cm4)

320 4.11

Model for Interdisciplinary Research on Climate (MIROC) 3.2,

high-resolution version (miroc3_2_hires)

100 5.08

MIROC 3.2, medium-resolution version (miroc3_2_medres) 500 3.96

Meteorological Institute University of Bonn (MIUB) ECHAM and

the global Hamburg Ocean Primitive Equation (miub_echo_g)

341 3.10

Max Planck Institute (MPI) ECHAM5 (mpi_echam5) 506 3.63

Meteorological Research Institute (MRI) Coupled General Circulation

Model (CGCM), version 2.3.2a (mri_cgcm2_3_2a)

350 3.08

NCAR Community Climate System Model (CCSM),

version 3 (ncar_ccsm3_0)

230 2.53

NCAR Parallel Climate Model (PCM) (ncar_pcm1) 350 1.99

Met Office (UKMO) Hadley Centre Unified Model (HadCM),

third configuration (ukmo_hadcm3)

341 3.18

Met Office Hadley Centre Global Environmental Model (HadGEM),

version 1 (ukmo_hadgem1)

240 3.51

climateprediction.net (CPDN) (HadCM3L) 160 0.13–9.27

Quantifying Uncertainty in Model Predictions (QUMP) (HadCM3) 80 2.2–6.04
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getting an adequate representation of variability as getting

the mean state. Wu and North (2003) have reported a

relationship between interannual variability and climate

sensitivity in an earlier set of GCMs. The idea behind

Wu and North (2003) relies on the cyclo-stationarity of

interannual variability (Kim and Wu 2000)—the fact

that in a control climate each calendar month has

its own interannual variability that can be considered

constant despite being different from the 11 other

months. Monthly mean surface temperatures are con-

sidered first at the gridpoint scale. The interannual

variability is individually calculated at each grid point

and for each month. Then, the global average of

monthly interannual variability is calculated for each

CMIP3 model and the observational and reanalysis da-

tasets. Note that the globally averaged variability is

higher during the boreal winter than during the boreal

summer. The larger winter variability is due to different

landmass distributions in the Northern and the Southern

Hemispheres. Because land regions have a smaller heat

capacity than the ocean regions, synoptic weather sys-

tems can generate larger temperature variations over

the Northern Hemisphere where more land exists

compared to the Southern Hemisphere. Another factor

that increases variability at high latitudes is the albedo

change caused by snow cover (Kumar and Yang 2003)

and sea ice variability. The models with the highest and

lowest climate sensitivity values show interannual vari-

ability that is quite different from the observations,

leading to the hypothesis that the shape of the globally

averaged variability, as a function of the calendar month,

could be used to evaluate some aspects of climatemodels.

Wu and North (2003) proposed quantifying the asym-

metry of the calendar month variances s2 by the s2
s /s

2
w

ratio, where s2
s is the global average of the smallest var-

iance for the summer months (from June to August) and

s2
w is the global average of the largest variance for the

winter months (from December to February).

a. Linear prediction

An approximately linear relationship is empirically

found in the CMIP3 ensemble between the s2
s /s

2
w ratio

and climate sensitivity and is shown in Fig. 1. The

Pearson correlation coefficient is 0.78 and is statistically

significant according to a two-sided t test (p value of

4:83 1025). If the CMIP3 model with the highest cli-

mate sensitivity is removed from the analysis, the cor-

relation is still 0.71. This relationship is consistent with

the results described for an earlier set of models (Wu

and North 2003). Using the linear relationship above, it

seems possible to constrain climate sensitivity by using

the s2
s /s

2
w ratio derived from the observational refer-

ences. Several sources of uncertainty contribute to

the width of the final confidence interval of climate

sensitivity and are included in the calculation. First, the

scatter of the data points makes the optimal linear re-

gression uncertain. The uncertainty of the linear re-

gression is represented in Fig. 1 by the two black dashed

curves that correspond to the 95%prediction confidence

interval. Second, the real climate is always subject to

changing external forcings (anthropogenic, volcanic,

and solar) that are not represented in the control simu-

lations used in this study. Alternatively, the s2
s /s

2
w ratio

derived from the CMIP3 transient simulation could be

used instead of the control runs. However, this inflates

the uncertainty because not all the models simulate the

natural forcing. Also, the control simulations are longer

and provide a more precise estimate of s2
s /s

2
w. Third, the

observations are uncertain because of measurement un-

certainty, model uncertainty in the reanalysis procedure,

and sampling uncertainty caused by the relatively short

length of observational records. The effects of multi-

decadal changes in modes of natural variability (Hurrell

1996) and nonlinear changes due to external aerosol

forcings are neglected. The uncertainty of the observa-

tional references s2
s /s

2
w ratio (marked by horizontal lines

in Fig. 1) is estimated in two steps. First, the observa-

tional data are detrended for each individual month to

FIG. 1. Scatterplot of CMIP3 climate sensitivity vs the summer-to-

winter interannual variability s2
s /s

2
w ratio. The correlation is 0.78,

and the dashed lines represent the 95% prediction confidence in-

terval (CI) for the linear regression. The horizontal colored lines

correspond to the 95% CI calculated for the references [ERA-40

(blue), HadCRUT3 (green), NCEP–NCAR (orange), andMERRA

(purple)]. The vertical dashed red line is the original CMIP3 mini-

mum tomaximum range, and the other vertical colored lines are the

95% CI for the climate sensitivity constrained by the corresponding

reference dataset. The climate sensitivity uncertainty range takes

into account both the regression and observational uncertainty.
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remove the twentieth-century transient warming. Second,

the unforced natural variability of each observational

dataset is approximated by bootstrapping 30 individual

years (20 for MERRA, since MERRA only has 29 years

of data) from the total number of years. The interannual

variability is then calculated for the 12 calendar months at

each grid point. This procedure is repeated 1000 times to

derive the 95% confidence interval for the observational

s2
s /s

2
w ratio. The results are shown as colored horizontal

lines in Fig. 1.

The ERA-40 and MERRA reference datasets show

s2
s /s

2
w ratios of similar magnitude and width. The Had-

CRUT3 dataset uses geographically scattered instru-

mental data that increase the uncertainty of s2
s /s

2
w. The

marine (sea surface temperature) and land (1.5-m tem-

perature) data are blended together, and the station data

are interpolated to a common grid. This homogenization

artificially brings more variability over grid boxes with

fewer observations (Brohan et al. 2006). We speculate

that, because fewer observations exist over oceans, the

winter variability is overestimated and the HadCRUT3

s2
s /s

2
w ratio is shifted toward smaller values. The s2

s /s
2
w

confidence interval based on theNCEP–NCARreanalysis

is larger and higher than for the other reference datasets.

In a final step, the uncertainty of the observational

reference is combined with the regression uncertainty to

derive the 95% confidence interval for climate sensi-

tivity by using a resampling method: For each observa-

tional dataset, 1000 possible s2
s /s

2
w ratios are sampled to

predict the climate sensitivity. Then, every sampled

s2
s /s

2
w ratio is used in the linear regression and leads to

a distribution of predicted climate sensitivity. Assuming

a Gaussian distribution for the predicted values, 1000

climate sensitivity values are sampled for each predictor.

Finally, the 95% confidence interval is estimated over an

ensemble of 106 predicted values. The result is given in

Table 2. All reference datasets are assumed to be equally

likely, but the conclusions do not depend strongly on this

assumption. The best estimate for the climate sensitivity

value is the average of the four predictions derived from

the four observational references and is equal to 3.4 K.

The corresponding 95% confidence interval is 1.5–5.1 K,

which is comparable to the ‘‘likely’’ range of 2–4.5 K

given in the recent IPCC AR4 (Solomon et al. 2007)

and a recent review summarizing multiple constraints

on climate sensitivity (Knutti and Hegerl 2008).

Despite the fact that a statistical test ensures that the

linear relationship is not by coincidence, a significant

correlation is not a strong argument for a reliable con-

straint unless the correlation is extremely strong. To test

the robustness, the same experimental design is applied

to theQUMPensemble (shown inFig. 2) and a significant

anticorrelation of 20.66 is found. The anticorrelation

makes sense froma physical point of view: a larger albedo

feedback implies a larger snow and sea ice variability

(Kumar and Yang 2003) and therefore a smaller s2
s /s

2
w

value. It also implies a greater climate sensitivity (Soden

and Held 2006). While this interpretation holds for the

QUMP ensemble, it does not apply to the CMIP3 case,

where a linear relationship with a slope of opposite sign

was found. This contradiction challenges the relevance of

s2
s /s

2
w as a consistent predictor. If the apparent correla-

tions are still tied to a physical process, then one would

expect a stronger correlation over regions of the globe or

over time periods for which the feedback ismost relevant.

According to Fig. 3, even if the relationship in both en-

sembles is stronger for land (Fig. 3d) than for ocean (Fig.

3c), as expected, the strength of the relationship in other

regions [NorthernHemisphere, high latitudes (Fig. 3b) or

the globe without the tropics (Fig. 3e)] never exceeds the

original value found for the global case (see Fig. 1). On

the other hand, if the relationship has a global character

and is related to the seasonal cycle, then shifting the

Southern Hemisphere by 6 months to align boreal and

austral winter and summer should amplify the correlation.

As a matter of fact, no increase is apparent (see Fig. 3f).

A large number of additional diagnostics were tested,

but we were unable to clearly associate a physical process

to the apparent correlations. This leaves the conclusion

that some of these correlations occur by chance. The ar-

gument that the CMIP3 correlation is significant and

similar to an earlier ensemble is not very strong, since

models not only share biases and parameterizations over

time but also between modeling centers (Masson and

Knutti 2011), which reduces the effective sample size

from around 20 to probably more like 10 or so.

b. Nonlinear prediction

The same analysis was repeated for the CPDN en-

semble in which the s2
s /s

2
w ratio was computed for

;5000 control simulations. Because of the large number

of simulations, one would expect to see a more detailed

TABLE 2. Constraint on climate sensitivity from the observed

interannual variability s2
s /s

2
w ratio, using the linear relationship

within the CMIP3 ensemble shown in Fig. 1. The columns indicate

the time period covered, the length of the observational datasets,

the best estimate of the predicted climate sensitivity, and the 95%

confidence interval (CI).

Dataset

Time period

covered (yr)

Length

(yr)

Climate

sensitivity (K)

95%

CI (K)

ERA-40 1958–2001 44 3.25 1.35–5.05

HadCRUT3 1850–2009 159 2.79 0.32–5.05

NCEP–NCAR 1948–2009 61 3.97 2.8–5.2

MERRA 1979–2008 29 3.41 1.62–5.06

Combined — — 3.36 1.52–5.09
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picture of the correlation between s2
s /s

2
w and the CPDN

climate sensitivity values. Note that the CPDN simula-

tion output is not available at the full gridpoint resolu-

tion but is regionally aggregated and 32 regions were

chosen to cover most of the globe surface. As a conse-

quence, the global average of the interannual variability

is necessarily less accurate than if computed directly

from the gridpoint scale but should still provide useful

information. The small gray dots in Fig. 4a show climate

sensitivity versus s2
s /s

2
w for the CPDN ensemble. To

make a comparison between CMIP3 and CPDN possi-

ble, the CMIP3 and the QUMP ensembles were in turn

regionally aggregated for the same regions to ensure

consistency, and they are represented by black and blue

circles, respectively. The global average of the regional

s2
s /s

2
w ratios is shifted toward smaller values because

part of the gridpoint information is lost, but the corre-

lation is still high for both CMIP3 and QUMP. Sur-

prisingly, no linear correlation exists for the CPDN

ensemble.

This result might seem disturbing at first, but it does

not imply that no relationship exists. To seek a possible

relationship, a pattern recognition algorithm is used to

predict the CPDN climate sensitivity values with the re-

gional s2
s /s

2
w ratios as input. The algorithm is called

‘‘random forest’’ and is based onmultiple regression trees

(Breiman et al. 1984). Similar to neural networks, random

forest belongs to supervised statistical learning tech-

niques. The random forest is trained to match climate

sensitivity values with 60% of the data and the remaining

40% of the data is used for validation. To minimize the

risk of overfitting, the training dataset consists of in-

dependent simulations chosen in the 152 climate sensi-

tivity categories. The true climate sensitivity versus the

sensitivity predicted from the 32 regional s2
s /s

2
w ratios is

shown in Fig. 4b. The prediction explains 69% of the

variance in climate sensitivity across the ensemble, with

a root-mean-square (RMS) prediction error of 1.24 K.

Apparently, the nonlinear relationship is strong

enough to constrain climate sensitivity from the pattern

of interannual variability. Such a technique has already

been used in the past with the regional seasonal cycle

amplitudes as in input to constrain climate sensitivity

Knutti et al. (2006). This study could explain 77% of the

variance in the set of 40% data not used during the

training phase through a neural network algorithm.

Despite high explained variance values, how relevant

are such nonlinear predictions when attempting to re-

duce the uncertainty of future climate change? To ad-

dress this question, we repeated the experiment done by

Knutti et al. (2006). In this experiment, a physical re-

lationship was expected between the seasonal cycle

amplitude and climate sensitivity on the basis of pre-

vious evidence found in Covey et al. (2000). In contrast

to s2
s /s

2
w, no linear relation was observed on a global

scale in either the CMIP or the CPDN ensembles (see

Fig. 5a). We followed the definition of the seasonal cycle

amplitude jAj given in Covey et al. (2000); that is, jAj is
the globally averaged absolute value of the July minus

January surface air temperature. In the current experi-

mental design, the random forest algorithm explains

72% of the climate sensitivity (see Fig. 5b) with an RMS

prediction error of 1.15 K. Thus far, relationships be-

tween climate sensitivity and two different measures of

variability seem to exist, even if they may be complex

and nonlinear. While these predictors are potentially

useful, the consistency of the nonlinear relationships

should be tested in other ensembles, as done with the

linear relationship above. Therefore, the CMIP3 climate

sensitivity values are in turn predicted using the non-

linear relationship found in CPDN. The predicted

CMIP3 values are indicated in Figs. 4b and 5b as black

circles. As expected, the unperturbed HadCM3 simu-

lation belonging to the CMIP3 ensemble model is cor-

rectly predicted by the random forest algorithm. But

for the rest of the CMIP3 ensemble, it is not clear

whether the nonlinear relationship is able to correctly

predict the climate sensitivity value. Some simulations

lie well outside 1 CPDN standard error, suggesting that

these models are structurally too different from the

HadCM3L model. The predictive skill of the method

can be quantified by using the general formulation of a

skill score (SS; Stevenson 2006). The skill is defined by

FIG. 2. As in Fig. 1, but the CMIP3 models are shown by black

dots, and the QUMP models are shown by blue circles. The anti-

correlation between the climate sensitivity and s2
s /s

2
w is 20.66 for

the QUMP ensemble. The gray color stands for the CMIP3 ex-

periment but without themodel with the highest climate sensitivity.
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FIG. 3. As in Fig. 2, but for limited regions: (a) Northern Hemisphere, (b) high latitudes, (c) ocean only, (d), land

only, and (e) the globe without the tropics. (f) The entire globe is considered, with the Southern Hemisphere shifted

by 6months tomatch the season occurring in theNorthernHemisphere. The CMIP3models are shown by black dots,

and the QUMP models are shown by blue circles.
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SS5 12MSEpred/MSEref, where MSEpred is the mean

square error of the predicted CMIP3 climate sensitivity

value, and MSEref is the mean square error obtained by

using a constant value equal to the median CMIP3 cli-

mate sensitivity value. The method has skill if 0, SS# 1

and has no skill if SS# 0. Neither the prediction based on

the regional s2
s /s

2
w ratios (SS521:63) nor that based on

the regional seasonal cycle amplitudes jAj (SS521:24)

has predictive skill when applied to theCMIP3models. In

contrast, the prediction applied to the CPDN ensemble is

skillful for s2
s /s

2
w (SS5 0:69) and jAj (SS5 0:76). As

a consequence, the nonlinear relationships are not ap-

plicable to different ensembles, consistent with results

found by Sanderson and Shell (2012). This is a strong

FIG. 4. (a) Scatterplot of climate sensitivity vs the globally averaged regional s2
s /s

2
w ratios for the CPDN (gray

dots), CMIP3 (black dots), and QUMP ensembles (blue dots). The red circle is the CMIP3 HadCM3 unperturbed

model. The dashed lines correspond to the prediction CI based on a linear regression. (b) Climate sensitivity

predicted with a random forest algorithm using the regional variability s2
s /s

2
w ratios as an input vs true climate

sensitivity. The scatterplot represents a subset of 40% CPDN data not used during the training phase (;2000

simulations; gray dots). The explained variance within CPDN is 69%. The black circles represent the CMIP3

values predicted using the relationship found using the CPDN ensemble; the red circle is the CMIP3 HadCM3

unperturbed model.

FIG. 5. As in Fig. 4, but using the seasonal cycle amplitude jAj instead. The explained variance within CPDN

is 72%.
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argument to rule out these two constraints as valid pre-

dictors for climate sensitivity, at least when the CPDN

ensemble serves as a training set.

c. Model calibration and uncertainty

An interesting question is how a significant correla-

tion can emerge without an obvious physical reason, and

not be by chance. We focus on illustrating how ‘‘tuning’’

or ‘‘calibrating’’ model parameters can play a central

role. For this question, the CPDN ensemble is the best

choice because of its large ensemble size and the possi-

bility to access the parameter values of each simulation.

Here ‘‘calibration’’ is the selection of a subset of

simulations according to some performance metric. It is

assumed that the design of the CPDN experiment did

not try to reproduce the observations and that the

complete ensemble represents a largely uncalibrated

state. This is not entirely true, since the CPDN

HadCM3L ensemble is already a subset of earlier at-

mospheric Hadley Centre model (HadAM3) simula-

tions that performed reasonably well, but the range of

responses covered by the CPDN ensemble is still very

broad, and strong observational constraints were not

explicitly placed on any set of parameters.

Figure 6a shows the scatterplot of climate sensitivity

versus s2
s /s

2
w for the CPDN ensemble (gray dots). The

FIG. 6. (a) Scatterplot of climate sensitivity vs the globally averaged regional s2
s /s

2
w ratios. The gray dots represent

;5000 CPDN perturbed simulations. The red dots represent a subset of 50 CPDN simulations that are both close to

the regional temperature mean state and the seasonal cycle of the unperturbed HadCM3 model as a reference. The

dashed lines represent the 95% prediction CI of a linear regression. The Pearson correlation coefficient is significant

(20.79). (b) Frequency distribution of the linear correlation coefficients obtained when randomly sampling 50

simulations 10 000 times. The correlation found on the calibrated subset is indicated by a vertical red line.

(c) Scatterplot of climate sensitivity vs the seasonal cycle amplitude jAj. The red dots represent 50 simulations that

are close to the regional temperature mean state of the HadCM3 model. The Pearson correlation coefficient is

significant (0.48). (d) As in (b), but for the seasonal cycle vs climate sensitivity relationship.
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effect of calibration is illustrated by selecting a subset of

50 CPDN simulations according to their proximity to

a reference dataset. In this case, a simulation belongs to

the calibrated subset if it is close (in terms of RMS error)

to the regional temperature mean state and to the re-

gional seasonal cycle value of the unperturbed

HadCM3L model as reference. The sample size of 50 is

a subjective choice, but it is a compromise between

a sufficient number of models to get a robust result and

a restrictive criterion for the calibration. The subset is

indicated by red dots in Fig. 6a. While no linear re-

lationship exists for the entire CPDN ensemble, a sta-

tistically significant linear anticorrelation of 20.79

emerges out of the calibrated subset. When 50 models

are randomly chosen instead, the frequency of finding

such a high linear correlation is very small. Figure 6b

shows the frequency distribution of the correlation cal-

culated in 10 000 randomly chosen simulation subsets of

size 50 and demonstrates that the correlation obtained

by calibration is not due to chance. A similar approach is

repeated in Fig. 6c showing climate sensitivity versus the

seasonal cycle amplitude jAj. In this case, the selection

criterion is the proximity to the regional temperature

mean state only. Although lower (0.48), the linear cor-

relation in the subset is still statistically significant. As

before, Fig. 6d shows that this correlation is unlikely to

be the result of chance, since more than 99% of the

correlation coefficients found in the 10 000 random en-

sembles lie below 0.48. The calibration toward an obser-

vational dataset instead of the unperturbed HadCM3L

model was also done but resulted in lower correlations

because of the structural differences between observa-

tions and models.

So far, a physical explanation for the original corre-

lation between climate sensitivity and the s2
s /s

2
w ratio

has not been discovered.While a physical link cannot be

fully excluded if some mutual dependences between

feedback and forcing exist (e.g., involving aerosol

properties), such connections are difficult to trace. In

contrast, examples of correlations introduced by obser-

vational constraints have already been demonstrated.

They might seem surprising because there is no obvious

process or mechanism that causes them, yet they are

entirely plausible. For example, Kiehl (2007) and Knutti

(2008) showed that climate feedback (or climate sensi-

tivity)is correlated with the aerosol forcing across

models, because many models try to reproduce the

twentieth-century warming. A higher sensitivity in a

model can be compensatedwith aweaker forcing tomatch

the observations. Therefore, it is likely that choices are

made in the model development process that introduce

correlations between forcings and feedbacks, even if

they are not physically related. Such correlations should

not be interpreted as being problematic; they simply

reflect that different choices in a model are possible

given a set of observations. Huybers (2010) similarly

showed correlations between feedback processes in

CMIP3 that are not obviously related. They likely ap-

pear because all models have to close the global energy

balance at the top of the atmosphere. Another in-

teresting consequence of model calibration can be the

absence of predictors within some ensembles. Because

calibration is an iterative process, repeated selections of

the best parameters to match the observations reduce

the phase space of an ensemble of parameters. This

causes the differences between the ensemble members

to vanish. Making use of the available information from

the observations can improve the reliability of the cli-

mate models (Johns et al. 2006). But, as a consequence,

if the CMIP3 models are tuned to match the twentieth-

century warming trend, the temperature mean state, or

seasonal cycle, it is not surprising that these variables are

no longer available to constrain future climate change

because the observations are no longer independent

from the models. This argument is consistent with the

fact that few predictors are known to constrain the

CMIP3 climate sensitivity values. Even in the case

where a valid predictor has been found, the posterior

confidence interval for climate sensitivity is often close

to the original prior range of the original CMIP3

ensemble (Huber et al. 2011). In general, note that cal-

ibration does not necessarily suppress ensemble di-

versity, as multivariate sets of calibrations are often

used to calibrate the parameters of a GCM (Jackson

et al. 2008) and many combinations of compensating

errors can provide a model that reproduces observa-

tions similarly well (Sexton et al. 2012).

4. Summary and discussion

With the availability of coordinated multimodel exper-

iments (Tebaldi and Knutti 2007) and perturbed phys-

ics experiments, ideas and methods that relate metrics

of model quality to projections have been getting a lot of

attention recently. While some of these studies are

promising and are likely to improve the accuracy of

projections or reduce the spread between models, many

have demonstrated that the use of observational con-

straints on models is far from straightforward. Here, we

have shown that an earlier proposed relationship

between interannual variability and climate sensitivity

across models, even if statistically significant, is unlikely

to be robust. In a different model ensemble, the sign

of the correlation is reversed, which is difficult to rec-

oncile with the argument that the relationship would be

caused by a physical process. Apart from a structural
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problem in the HadCM3 model, for which we have no

evidence, this only leaves the conclusion that the ap-

parent correlation is by chance, possibly influenced by

the screening of many possible predictors. As defined by

DelSole and Shukla (2009), screening is ‘‘any procedure

for choosing variables that preferentially includes or

excludes certain characteristics of the joint relation be-

tween predictor and predictand.’’ With this meaning, an

illustration of screening is provided in Fig. 3 where a lot

of configurations were tested and only the case with the

highest correlation was kept. This underscores the ar-

gument for process understanding as an important

component of such an analysis. The case for such an

observational constraint is clearly much stronger if the

relationship across models can be explained by a known

and well-quantified physical process (as in Knutti et al.

2006). In a second part, we have demonstrated that re-

lationships across models can also appear as a result of

observational constraints imposed on an ensemble of

uncalibrated models.

While model calibration can help to discover poten-

tially useful relationships, the use of the same observa-

tions as those assimilated in the calibration to constrain

future climate projections could be problematic. Along

with small ensembles of the size of CMIP3 and in-

terdependencies between models (Masson and Knutti

2011), such relationships complicate the interpretation of

multimodel results and the use of observations in model

evaluation andmodel selection (Knutti 2010; Knutti et al.

2010b; Tebaldi and Knutti 2007; Weigel et al. 2010). In

summary, three hurdles need to be overcome before

constraining future climate change. First, a relationship

has to be found. At this stage, calibration could either

help or hinder the process, depending on whether or not

the relationship has a physical basis. Second, the re-

lationship needs to be consistent across different types of

ensemble. Third, the relationship needs to be physically

understandable. Unless a relationship meets these crite-

ria, it is of limited value.
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Boé, J., A. Hall, and X. Qu, 2009a: Current GCMs’ unrealistic

negative feedback in the Arctic. J. Climate, 22, 4682–4695.

——, ——, and ——, 2009b: Deep ocean heat uptake as a major

source of spread in transient climate change simulations. Geo-

phys. Res. Lett., 36, L22701, doi:10.1029/2009GL040845.

——, ——, and ——, 2009c: September sea-ice cover in the Arctic

Ocean projected to vanish by 2100. Nat. Geosci., 2, 341–343.

Breiman, L., J. Friedman, C. Stone, and R. A. Olshen, 1984: Clas-

sification and Regression Trees. Chapman and Hall, 368 pp.

Brohan, P., J. Kennedy, I. Harris, S. Tett, and P. Jones, 2006: Un-

certainty estimates in regional and global observed tempera-

ture changes: A new data set from 1850. J. Geophys. Res., 111,
D12106, doi:10.1029/2005JD006548.

Collins,M., B. Booth, B. Bhaskaran,G.Harris, J.Murphy,D. Sexton,

and M. Webb, 2011: Climate model errors, feedbacks and

forcings: A comparison of perturbed physics and multi-model

ensembles. Climate Dyn., 36, 1737–1766.

Covey, C., and Coauthors, 2000: The seasonal cycle in coupled

ocean–atmosphere general circulation models. Climate Dyn.,

16, 775–787.

DelSole, T., and J. Shukla, 2009: Artificial skill due to predictor

screening. J. Climate, 22, 331–345.

Frame, D., and Coauthors, 2009: The climateprediction.net BBC

climate change experiment: Design of the coupled model en-

semble. Philos. Trans. Roy. Soc. London, A369, 855–870.

Gregory, J., and Coauthors, 2004: A new method for diagnosing

radiative forcing and climate sensitivity. Geophys. Res. Lett.,

31, L03205, doi:10.1029/2003GL018747.

Huber, M., I. Mahlstein, M. Wild, J. Fasullo, and R. Knutti, 2011:

Constraints on climate sensitivity from radiation patterns in

climate models. J. Climate, 24, 1034–1052.

Hurrell, J., 1996: Influence of variations in extratropical wintertime

teleconnections on Northern Hemisphere temperature. Geo-

phys. Res. Lett., 23, 665–668.
Huybers, P., 2010: Compensation between model feedbacks and

curtailment of climate sensitivity. J. Climate, 23, 3009–3018.

Jackson, C. S., M. K. Sen, G. Huerta, Y. Deng, and K. P. Bowman,

2008: Error reduction and convergence in climate prediction.

J. Climate, 21, 6698–6709.

Johns, T., and Coauthors, 2006: The new Hadley Centre Climate

Model (HadGEM1): Evaluation of coupled simulations.

J. Climate, 19, 1327–1353.

Jun, M., R. Knutti, and D. Nychka, 2008a: Local eigenvalue anal-

ysis of CMIP3 climate model errors. Tellus, 60A, 992–1000.

——, ——, and ——, 2008b: Spatial analysis to quantify numerical

model bias and dependence: How many climate models are

there? J. Amer. Stat. Assoc., 103, 934–947.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Re-

analysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.
Kiehl, J., 2007: Twentieth century climate model response

and climate sensitivity. Geophys. Res. Lett., 34, L22710,

doi:10.1029/2007GL031383.

1 FEBRUARY 2013 MAS SON AND KNUTT I 897



Kim, K., and Q.Wu, 2000: Optimal detection using cyclostationary

EOFs. J. Climate, 13, 938–950.

Knight, C., and Coauthors, 2007: Association of parameter, soft-

ware, and hardware variation with large-scale behavior across

57,000 climate models. Proc. Natl. Acad. Sci. USA, 104,

12 259–12 264.

Knutti, R., 2008:Why are climatemodels reproducing the observed

global surface warming so well? Geophys. Res. Lett., 35,
L18704, doi:10.1029/2008GL034932.

——, 2010: The end of model democracy? Climatic Change, 102,

395–404.

——, and G. Hegerl, 2008: The equilibrium sensitivity of the

Earth’s temperature to radiation changes. Nat. Geosci., 1,

735–743.

——, G. Meehl, M. Allen, and D. Stainforth, 2006: Constraining

climate sensitivity from the seasonal cycle in surface temper-

ature. J. Climate, 19, 4224–4233.

——, G. Abramowitz, M. Collins, V. Eyring, P. J. Gleckler,

B. Hewitson, and L. Mearns, 2010a: Good practice guidance

paper on assessing and combining multi model climate pro-

jections. Meeting Report of the Intergovernmental Panel on

Climate Change Expert Meeting onAssessing and Combining

Multi Model Climate Projections, IPCC, 1–14.

——, R. Furrer, C. Tebaldi, J. Cermak, and G. Meehl, 2010b:

Challenges in combining projections from multiple climate

models. J. Climate, 23, 2739–2758.
Kumar, A., and F. Yang, 2003: Comparative influence of snow and

SST variability on extratropical climate in northern winter.

J. Climate, 16, 2248–2261.

Mahlstein, I., and R. Knutti, 2011: Ocean heat transport as a cause

for model uncertainty in projectedArctic warming. J. Climate,

24, 1451–1460.

——, and ——, 2012: September Arctic sea ice predicted to dis-

appear near 28C global warming above present. J. Geophys.

Res., 117, D06104, doi:10.1029/2011JD016709.

Masson, D., and R. Knutti, 2011: Climate model genealogy. Geo-

phys. Res. Lett., 38, L08703, doi:10.1029/2011GL046864.

Meehl, G., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer,

M. Latif, B. McAvaney, and J. F. B. Mitchell, 2007: The

WCRP CMIP3 multimodel dataset—A new era in climate

change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.
Murphy, J., D. Sexton, D. Barnett, G. Jones, M. Webb, M. Collins,

and D. Stainforth, 2004: Quantification of modelling un-

certainties in a large ensemble of climate change simulations.

Nature, 430, 768–772.
Piani, C., D. Frame, D. Stainforth, and M. Allen, 2005: Constraints

on climate change fromamulti-thousandmember ensemble of

simulations. Geophys. Res. Lett., 32, L23825, doi:10.1029/

2005GL024452.

Raisanen, J., L. Ruokolainen, and J. Ylhaisi, 2010: Weighting of

model results for improving best estimates of climate change.

Climate Dyn., 35, 407–422.
Rienecker, M., and Coauthors, 2011: MERRA: NASA’s Modern-

Era Retrospective Analysis for Research and Applications.

J. Climate, 24, 3624–3648.

Rowlands, D. J., and Coauthors, 2012: Broad range of 2050

warming from an observationally constrained large climate

model ensemble. Nat. Geosci., 5, 256–260.

Sanderson, B. M., 2011: A multimodel study of parametric un-

certainty in predictions of climate response to rising green-

house gas concentrations. J. Climate, 24, 1362–1377.

——, and K. M. Shell, 2012: Model-specific radiative kernels for

calculating cloud and noncloud feedbacks. J. Climate, 25, 7607–

7624.

——, and Coauthors, 2008a: Constraints on model response to

greenhouse gas forcing and the role of subgrid-scale processes.

J. Climate, 21, 2384–2400.

——, C. Piani, W. Ingram, D. Stone, andM. Allen, 2008b: Towards

constraining climate sensitivity by linear analysis of feedback

patterns in thousands of perturbed-physics GCM simulations.

Climate Dyn., 30, 175–190.

——, K. Shell, and W. Ingram, 2010: Climate feedbacks de-

termined using radiative kernels in a multi-thousand member

ensemble of AOGCMs. Climate Dyn., 35, 1219–1236.

Sexton, D. M. H., J. M. Murphy, M. Collins, and M. J. Webb, 2012:

Multivariate probabilistic projections using imperfect climate

models. Part I: Outline of methodology. Climate Dyn., 38,

2513–2542.

Shukla, J., T.DelSole,M. Fennessy, J. Kinter, andD. Paolino, 2006:

Climate model fidelity and projections of climate change.

Geophys. Res. Lett., 33, L07702, doi:10.1029/2005GL025579.

Soden, B., and I. Held, 2006: An assessment of climate feedbacks in

coupled ocean–atmosphere models. J. Climate, 19, 3354–3360;

Corrigendum, 19, 6263.
Solomon, S., D. Qin,M.Manning, M.Marquis, K. Averyt, M.M. B.

Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate

Change 2007: The Physical Science Basis. Cambridge Uni-

versity Press, 996 pp.

Stainforth, D., and Coauthors, 2005: Uncertainty in predictions of

the climate response to rising levels of greenhouse gases.

Nature, 433, 403–406.
——, M. Allen, E. Tredger, and L. Smith, 2007: Confidence, un-

certainty and decision-support relevance in climate pre-

dictions. Philos. Trans. Roy. Soc. London, A365, 2145–2161.

Stevenson,M., 2006: Forecast verification:A practitioner’s guide in

atmospheric science. Int. J. Forecast., 22, 403–405.

Tebaldi, C., and R. Knutti, 2007: The use of the multi-model en-

semble in probabilistic climate projections.Philos. Trans. Roy.

Soc. London, A365, 2053–2075.

Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis.

Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

Webb, M., and Coauthors, 2006: On the contribution of local

feedbackmechanisms to the range of climate sensitivity in two

GCM ensembles. Climate Dyn., 27, 17–38.

Weigel, A., R. Knutti, M. Liniger, and C. Appenzeller, 2010: Risks

of model weighting in multimodel climate projections. J. Cli-

mate, 23, 4175–4191.

Wigley, T., R. Smith, and B. Santer, 1998: Anthropogenic influence

on the autocorrelation structure of hemispheric-mean tem-

peratures. Science, 282, 1676–1679.
Wu, Q., and G. North, 2003: Statistics of calendar month averages

of surface temperature: A possible relationship to climate

sensitivity. J. Geophys. Res., 108, 4071, doi:10.1029/

2002JD002218.

——,D. Karoly, and G. North, 2008: Role of water vapor feedback

on the amplitude of season cycle in the global mean surface air

temperature. Geophys. Res. Lett., 35, L08711, doi:10.1029/
2008GL033454.

Yokohata, T.,M. J.Webb,M. Collins, K.D.Williams,M.Yoshimori,

J. C. Hargreaves, and J. D. Annan, 2010: Structural similarities

and differences in climate responses to CO2 increase between

two perturbed physics ensembles. J. Climate, 23, 1392–1410.

898 JOURNAL OF CL IMATE VOLUME 26


