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[1] An ensemble of models can be interpreted in two ways.
The first treats each model as an approximation of the true
system with some random error. Alternatively, the true
system can be interpreted as a sample drawn from a distri-
bution of models, such that model and truth are statistically
indistinguishable. Both interpretations are ubiquitous and
have different consequences for the uncertainty of model
projections, but are rarely defended. Here we argue that the
two seemingly conflicting views are in fact complementary,
and the interpretation of the ensemble may evolve seam-
lessly from the former to the latter. We show some ‘truth
plus error’ like properties exist for historical and present day
climate simulations in the CMIP archive, and that they can
be explained by the ensemble design and tuning to obser-
vations, although both models and tuning are imperfect. For
future projections, structural differences in model response
arise which are independent of the present day state and thus
the ‘indistinguishable’ interpretation is increasingly favored.
Our inability to define performance metrics that identify
‘good’ and ‘bad’ models can be explained by the models
having largely exploited the available observations. The
remaining model error is largely structural and the observa-
tions are often uninformative to further reduce model biases
or reduce the range of projections covered by the ensemble.
The discussion here is motivated by the use of multi model
ensembles in climate projections, but the arguments are
generic to any situation where multiple different models
constrained by observations are used to describe the same
system. Citation: Sanderson, B. M., and R. Knutti (2012), On the
interpretation of constrained climate model ensembles, Geophys.
Res. Lett., 39, 1L16708, doi:10.1029/2012GL052665.

1. Introduction

[2] Recent coordinated efforts to produce simulations
of past and future climate with many climate models devel-
oped at different institutions have provided new opportuni-
ties to explore uncertainties in climate projections. Literally
hundreds of studies were conducted using data from the
recent World Climate Research Program (WCRP) Coupled
Model Intercomparison Project Phase 3 (CMIP3) [Meehl
et al., 2005], and the next CMIPS5 effort is already under-
way. While the simulations in those intercomparisons are
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clearly specified, participation by the modeling groups is
voluntary. The resulting ensemble is neither sampled ran-
domly nor systematically and is often called an “ensemble of
opportunity” [Tebaldi and Knutti, 2007]. Model perfor-
mance, resolution, as well as the degree of complexity by
which the different models describe various processes vary
substantially [Gleckler et al., 2008; Reichler and Kim, 2008].
Models also share whole components or parameterizations
and are therefore not independent [Masson and Knutti, 2011;
Pennell and Reichler, 2011], making the sampling distribu-
tion of any statistic computed from ensemble difficult to
interpret [Knutti et al., 2010a].

[3] For many qualitative or process-based studies, a strict
statistical interpretation of the ensemble is unnecessary,
indeed models can be used to validate physical arguments,
conservation laws or for individual model evaluation with-
out any need for underlying assumptions about the ensemble
distribution. However, for any probabilistic evaluation of
ensemble projections — one is forced to make a judgment on
the ensemble structure and there are two fundamentally
different interpretations of the ensemble that might appear
mutually exclusive [Annan and Hargreaves, 2010; Knutti
et al., 2010b; Pennell and Reichler, 2011; Tebaldi and
Sanso, 2009]. The models can be interpreted as ‘truth plus
error’, e.g., random samples from a distribution of plausible
models centered about the true climate [Buser et al., 2009;
Furrer et al., 2007; Smith et al., 2009; Tebaldi et al., 2005].
Note that for simplicity the observed state is considered
as truth in the following discussion. Alternatively, in the
statistically ‘indistinguishable’ interpretation [Annan and
Hargreaves, 2010], each model can be considered exchange-
able with the other members and with the real system [e.g.,
Jackson et al., 2008; Murphy et al., 2007; Perkins et al.,
2007], i.e., the truth (the real climate) and all models are
thought to be drawn from the same distribution. Many studies
which attempt to integrate simulations from different models
necessarily use one or the other interpretation, but with a few
exceptions [Annan and Hargreaves, 2010; Lopez et al., 2006;
Tebaldi and Sanso, 2009] usually do not discuss the statistical
framework. Uncertainty in projections decreases strongly in
the ‘truth plus error’ view as more models are considered
[Annan and Hargreaves, 2010; Knutti et al., 2010a; Lopez
et al., 2006; Tebaldi and Sanso, 2009]. This is because the
uncertainty of the model consensus (similar to the uncertainty
in the mean for independent measurements) is estimated more
precisely as the sample size increases. In contrast, in the
‘indistinguishable’ interpretation the uncertainty is character-
ized by the ensemble spread and is largely independent of the
sample size (see Annan and Hargreaves [2010] for more
details). For that reason, the interpretation of the ensemble is
not just an academic question, but of direct relevance to
quantifying uncertainties in projections.

[4] A perfect ensemble of weather forecasts would aim to
be indistinguishable from truth, and with sufficient samples,
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Figure 1. (a) Distributions of inter-model distances calcu-
lated over multiple variables for CMIP-3, CMIP-5 and
selected observations. For each model, a box-whisker plot
is shown where the central, filled circle is the median distance
between that model and other models in the combined ensem-
ble. Boxes indicate the 25th to 75th percentiles of the distri-
bution, while the whiskers show the full width of the
distribution. Outliers, defined to be greater than 1.5 times
the inter-quartile range above the upper quartile, or less than
the lower quartile, are shown as unfilled circles. The observa-
tions (red) and multi-model mean (blue) are treated as addi-
tional ensemble members, and the corresponding distances
from each model to the observations and mean are plotted
with red and blue crosses on each line respectively. All dis-
tances are normalized by the mean inter-model distance in
the combined CMIP3/CMIP5 ensemble. Rank histograms
for the observations in the combined CMIP3/CMIP5 ensem-
ble. The rank of the observations in the context of the com-
bined ensemble is evaluated for each of a truncated set of
EOFs, weighted by the variance associated with that EOF,
and collated into 10 equally sized bins. EOFs are calculated
for (b) surface temperature, (c) total precipitation, (d) sea
level pressure and (e) for the multivariate case. Red vertical
bars show rank delimitations for 25th and 75th percentiles
of the ensemble, with numbers showing the frequency that
the observations fall into each delimitation.

one can validate whether this goal has been achieved
[Hamill, 2001]. Since climate projections cannot be verified
directly, the arguments for the different interpretations are
more circumstantial. The ‘truth plus error’ paradigm appears
to be rooted in how models are developed: each group tries
to replicate observations in their model, making somewhat
different and ideally independent choices. Support for this
view comes from the fact that the multi-model mean is often
closer to observations than any individual ensemble member
[Gleckler et al., 2008; Knutti et al., 2010a; Lambert and
Boer, 2001; Schaller et al., 2011]. Part of this effect may
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arise from the centralising tendency from tuning models
towards a particular observation [Yokohata et al., 2011] but
another part arises by construction, since the squared error
of the ensemble mean (relative to any reference) is never
greater than the mean of the squared errors of each member
(Cauchy-Schwartz inequality) [Annan and Hargreaves,
2011]. In other words, the model mean must perform better
than the models on average. But in many cases the model
mean beats every model, i.e., the effect is larger than if the
reference was chosen randomly. Annan and Hargreaves
[2011] find that in an idealized indistinguishable ensemble,
the result is dependent on both the relative widths of the dis-
tributions from which the ‘observations’ and models are taken
as well as the dimensionality of the space. They find cases
where the CMIP3 ensemble mean is closer to observations
than any other model to be unexceptional considering similar
results when other models are treated as truth. An EOF based
analysis of a small number of output fields in the CMIP3
models is used to calculate an effective dimension for the
ensemble, by examining the rate of decay of variance in
ensemble modes of variability. They obtain a dimensionality
of 5 to 7 — which they use to show consistency with the
number of nearer neighbors found in their idealized indistin-
guishable case with similar dimensionality. The authors do
note that the analysis of Gleckler et al. [2008] with a more
comprehensive set of diagnostics implies far fewer nearer
neighbors, implying a more over-dispersive ensemble.

[s] However, the idealizations employed in Annan and
Hargreaves [2011] introduce some conceptual difficulties.
The multi-model ensemble contains some models with strong
similarities (such as single models at different resolutions),
which tend to pair together in any ‘nearest neighbor’ type
analysis — thus biasing any interchangeability argument
which treats certain models as truth. Secondly, this type of
effect also tends to reduce the number of ‘effective models’
in the ensemble — since some models are, in effect, near
duplicates. If the effective ensemble size is significantly
smaller than the apparent size, the sampling error will
increase (or worse, the apparent mean will be biased by the
error in the replicated models). Finally, as the authors point
out, in an idealized indistinguishable ensemble with the
effective dimensionality of CMIP3, the ‘truth’ having no
nearer neighbors than the multi-model mean would be
unexceptional . However, by definition that makes this metric
an inappropriate test of truth-centeredness. It shows that a
case where the multi-model mean is closest to observations
can appear in an indistinguishable ensemble, and thus does
not exclude that interpretation, but also does not exclude a
truth-centered ensemble.

2. Evidence for Truth-Centered Behavior in
CMIP

[6] We propose instead that a metric of model centrality
which relies on the complete distribution of distances
from each model to all other models in the ensembles
(see auxiliary material) might be less susceptible to the
model-interdependency and sampling issues listed above.' In
Figure 1a, we show that if one jointly considers a sufficiently
large number of variables, the CMIP3 and CMIP5 historical

'Auxiliary materials are available in the HTML. doi:10.1029/
2012GL052665.
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simulations appear to be approximately centered on observed
values (more so than any other model in the ensemble, but not
dramatically so). The analysis, described in detail in the
auxiliary material, uses a distance metric based on a multi-
variate EOF analysis to define inter-model distances as well
as model-observation distances. The mean model-observa-
tion distance is smaller than the mean distance when any
particular model is treated as truth, despite the fact that many
of the models have close relatives in the ensemble with very
small inter-model distances. The near-neighbor analysis also
shows the observations to be closer to the multi-model mean
than to any other model. However, as noted by Annan and
Hargreaves [2011], this is hardly conclusive given that in
our analysis, 5 models in the combined CMIP3/5 ensemble
are also closer to the multi-model mean than they are to any
other model.

[7] Tuning to observations may explain part of this
apparent truth-centeredness: each model has limited degrees
of freedom with which to match observations, resulting in an
irreducible error even after optimal tuning. But to the extent
that the structural errors are independent across the ensemble,
then the multi-model mean can be closer to the observations
than any individual member. Structural errors that are com-
mon to all models would remain even for a large ensemble
and perfect tuning. Structural errors may be common to all
models (e.g., limited resolution) or model specific (e.g.,
assuming fixed vegetation vs. dynamic vegetation). They are
dependent both on the structural form of the model and the
implicit choice of model performance metrics [Knutti et al.,
2010a] chosen when tuning the model.

[8] We can show some evidence of this behavior by con-
sidering the rank of the observations for different variables —
some of which are more likely to be tuned due to availability
of observations and ease of measurement. To somewhat
address the issues of the independence for the rank histogram,
we evaluate the rank of the observations in an EOF space,
such that each rank represents an independent measure of
inter-model spread. We truncate the EOFs to describe 85
percent of the total ensemble variance, which ensures the
overall shape of the histogram is most reflective of the leading
modes of model differences in the ensemble. The results show
that for all variables considered (Figures 1b—1d) the ensemble
appears somewhat overdispersive (i.e., partly truth-centered,
indicated by a tendency for the rank of the observations to be
clustered towards the center of the histogram). A rank histo-
gram produced using a multi-variate EOF (Figure le) using
all available diagnostics also appears overdispersive. To state
this quantitatively, rather than a complex decomposition of
the chi-squared statistic, we propose a simple test of truth
centeredness based on the rank histogram by counting the
frequency of the observations lying between the 25th and 75th
percentiles of the distribution and subtracting the frequency
outside this range. If the distribution were flat, we would
expect this value to be near zero. However, we find that in the
all variable case (where there are 13 truncated modes), the
value is +9 (Figure le). A perfect model study, with each
single ensemble member treated as truth, shows that this value
is not exceeded within the ensemble (although a single model
has an equal score of 9 and the ensemble average, by con-
struction is 0).

[v] The discrepancy between these results and those of
Annan and Hargreaves [2011], which defend the indistin-
guishable interpretation, can be explained if one considers
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the different sensitivities of the two techniques. A near-
neighbor analysis such as by Annan and Hargreaves [2011]
finds the observations to be indistinguishable from truth
because there exist other models in the ensemble which are
comparably close to the mean of the remaining models.
However, the statistics of such an analysis are dominated by
a few 'good’ models which lie close to the observations and
is largely unaffected by the behavior of outliers. In the
analysis presented above, however, the mean inter-model
distance would tend to be dominated by the outliers. Hence,
a plausible interpretation is that the observations are largely
indistinguishable from a subset of high-performing models
within the ensemble, but the ensemble as a whole appears
weakly truth centered because there are a significant number
of outliers with largely independent model errors.

[10] Although the unweighted multi model mean has been
the default choice in the Intergovernmental Panel on Climate
Change (IPCC) Assessment Reports, uncertainties in [IPCC
reports were largely based on a spread of models, irrespec-
tive of the size of the ensemble, thus assuming an ‘indis-
tinguishable’ view for the future. The implicit justification
for the latter is that each model is a plausible representation
of the system given our incomplete understanding of the
processes, limited computational capacity, uncertainty in
observations, and noise from natural variability [Knutti,
2008; Knutti et al., 2010a; Parker, 2006]. If, at least for a
very large number of models, uncertainty is dominated by
common structural limitations and observation uncertainties,
then errors cannot be expected to cancel, making the ‘truth
plus error’ interpretation difficult to defend for projections.

3. Reconciling the Two Paradigms

[11] The above discussion and the recent studies [e.g.,
Annan and Hargreaves, 2010] imply that the two interpreta-
tions are mutually exclusive. Here we argue that the CMIP3
and CMIPS5 ensembles (and in fact any ensemble constrained
with data) may have elements of both interpretations that are
not contradictory. Consider a very broad ensemble of inde-
pendent models (assuming no common structural model error
for the moment) where the parameters of each are adjusted to
optimize their respective performance relative to an observed
“truth’. Because remaining errors are independent, we obtain
by design a truth centered ensemble. In other words, with
independent decisions in model development and perfor-
mance metrics, the truth-centered interpretation is more
appropriate. However, there is structural error common across
models, so for a large and optimally tuned ensemble the
model average would converge to “truth plus common
structural error”. Also, the number of models is small, CMIP
models are not developed independently [Masson and Knutti,
2011] and optimal calibration is difficult due to computational
cost. Each of these effects will tend to reduce the truth-
centered behavior in the ensemble.

[12] Common structural error may be difficult to separate
from intermodel differences, i.e., “truth plus error plus
structural error” may have similar properties to “indistin-
guishable” in simple tests using correlations or root mean
square errors. Correlated errors and the bias of a model mean
not decreasing quickly with more models thus does not
exclusively support the interpretation of an “indistinguish-
able” ensemble, as argued by Annan and Hargreaves [2010],
but can just as plausibly be the result of structural errors
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Figure 2. Illustrations of an unconstrained (light grey) and a
constrained (dark grey, mean in black) ensemble of a toy
model. Observational uncertainties are marked by yellow
ranges. Columns one to three show randomly chosen realiza-
tions. Column four shows the density of a rank histogram of
the model mean, calculated at every time step and averaged
over many realizations. Yellow to red colors in the center
indicate high probability for the truth (red) to be near the cen-
ter of the dark grey ensemble, (‘truth plus error’ interpreta-
tion), while uniform light blue color indicates that the
ensemble member equally likely to be anywhere in the range
of the individual responses (‘indistinguishable’ interpreta-
tion). Red colors near the edges imply that the truth is outside
the model range, i.e., then ensemble is overconfident. Truth/
models are (a) linear (L)/linear (L), (b) quadratic (Q)/qua-
dratic (Q), (c, d) Q/L and (e) Q/Q.

common to most models. Hence we argue that conceptually,
an ensemble of historical simulations constrained with
observations by design is truth centered to some degree for
variables which is used in the tuning process, although it
might look like “indistinguishable” in a statistical analysis
due to structural error, a small sample, and limited model
calibration and degrees of freedom to tune to observations.
For long term climate prediction, where the observations of
the present no longer strongly constrain the response, each
ensemble is a plausible future and the indistinguishable
interpretation is appropriate. Constraints of the present day
climate on future projections are often weak (see below)
[Knutti et al., 2010a], thus the ‘indistinguishable’ interpreta-
tion to infer model uncertainty as in [PCC is probably useful
for future projections, in agreement with the arguments made
by Annan and Hargreaves [2010].

4. An Illustrative Toy Model

[13] In Figure 2 we show several variations of a toy model
to illustrate the argument. A large ensemble (thin grey lines)
is produced, ‘truth’ is randomly selected from the ensemble,
and observations (yellow bars) are used to select a subset of
20 simulations “consistent” with observations (bold grey
lines). The likelihood for accepting a simulation for the
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“consistent” subset is proportional to exp(—x7), where x is
the sum of squared distances from the observation mean
divided by the observation uncertainty. In Figure 2a all
models are linear and truth is always close to the ensemble
mean. Three cases are shown for illustration. The rightmost
column shows a density plot formed by a rank histogram at
every time step, based on many samples. Yellow to red
colors near the center imply that the truth is much more
likely to be near the ensemble mean, i.e., the ensemble is
largely truth centered, while a uniform density means that
the truth is equally likely to be anywhere in the ensemble, as
it would be in an ‘indistinguishable’ paradigm. Because
models and truth in case (a) are linear, it is constrained for all
forecast lead times by the observations and the ensemble
remains largely truth-centered. In contrast, in Figure 2b the
models are quadratic and underconstrained, and the rank
histogram shows that the ensemble is truth centered in the
beginning, but then gradually transitions to ‘indistinguish-
able’. In the third case (Figure 2c) the observations are
quadratic but the models are linear. This is a simple ana-
logue to the models being underconstrained and structurally
wrong, i.e., we have a “truth plus error plus structural error”
as would occur if a feedback process existed in reality, but
was absent from the models. The fourth case is similar to
the third but the models are overconstrained. This makes the
ensemble look similar to ‘indistinguishable’, but in reality it
is the result of structural error preventing perfect tuning.
For a short time the ensemble becomes ‘indistinguishable’
but then we observe a third state, the ‘overconfidence’, in
which truth is mostly outside the model range as a result of
structural error. In this case the ensemble becomes simply
uninformative. Finally, it is important to note that the tran-
sition from ‘truth plus error’ to ‘indistinguishable’ only
occurs if the future response is unconstrained by the obser-
vations. In Figure 2e, starting from Figure 2b two additional
observations (yellow bars) are added. The ensemble now
remains truth centered for a longer time. Therefore, at least in
principle, if more observations become available which
enable parameters of the model to be directly constrained, the
ensemble can remain truth centered, if no significant struc-
tural error is present.

[14] Clearly the distribution for both the constrained
period and the future is somewhat dependent on the prior
distribution of possible models , and a prior which was not
uniform in the observed domain would results in an posterior
which was not exactly truth centered [ Yokohata et al., 2011].
However, the toy example provides a simple visualization of
the argument that two seemingly irreconcilable statistical
interpretations can apply to the same ensemble, although for
different lead times or for different variables.

5. Interpreting the Spread of CMIP

[15] An important related question is whether the CMIP
ensemble spread is too narrow (i.e., drawn from a smaller
distribution than the hypothetical spread of possible futures),
about right (drawn from an appropriate distribution), or too
broad. Although there is no way to properly test this for the
future due to the lack of a large verification ensemble,
analysis of the model spread for the present day as in
Figure 1 or by Annan and Hargreaves [2010] is interesting
but of limited use, because present day spread is likely
dominated by structural limitations (e.g., imperfect physics,
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limited resolution) which prevent perfect tuning to obser-
vations, whereas model spread in the future arises due to
different representations of physical processes and feedback
mechanisms. Indeed, correlations between the simulated
current and future climate are generally weak [Knutti et al.,
2010a]. The ensemble may be adequate for reproducing
current climate but overconfident for projections if key
uncertainties are not adequately sampled. Second, if the
CMIP spread was too large, we should be able to reduce it
by conditioning on observations. Except for a few cases
(e.g., for the Arctic) [Boe et al., 2009; Hall and Qu, 2006;
Mahistein and Knutti, 2011] such constraints are rarely
found, implying that any outcome in the ensemble range is as
plausible as the others, often referred to as ‘model democ-
racy’ [Knutti, 2010]. Third, in some cases the ensemble is
known to underestimate spread, for example due to unre-
solved processes and feedbacks (e.g., dynamic vegetation,
ice sheets, methane hydrates), or because some known
uncertainties are not sampled (e.g., the carbon cycle). Sim-
plifications and parameterizations common to many models
(e.g., limited resolution, imperfect numerical schemes) also
favor the interpretation of an overconfident ensemble.
Clearly, the conclusions outlined here are applicable to the
current generation of climate models. The structural limita-
tions in models, the resolution, complexity and adequacy of
parameterizations can reasonably be expected to improve in
the future as it has done in the past [Reichler and Kim, 2008].

[16] In summary, model spread in CMIP3 or CMIPS5 could
be interpreted as an emerging property of an ensemble that
has been calibrated and constrained with observations. In
that case, the resulting distribution of the ensemble of
opportunity would be the posterior distribution given the
data produced from a poorly planned Bayesian experiment.
Such an interpretation is conceptually interesting but prob-
ably overly optimistic, because model calibration in this
high-dimensional parameter space is difficult, models are
dependent and the ensemble is small. We argue that the lack
of correlation between observables and predictions in
CMIP3 and CMIP5 could partly arise because the currently
available observations have already largely been exploited in
the tuning and model development process. When combined
with structural errors in each model which prevent perfect
tuning, this does explain the difficulty in further reducing the
model spread in CMIP3 and CMIPS.

6. Conclusion

[17] Here we offer a solution to reconcile two seemingly
inconsistent interpretations of model ensembles that have
caused debate in the climate modeling community. Concep-
tually, we argue that in a constrained ensemble there can be
elements of the ‘truth plus error’ and ‘indistinguishable’
paradigms. The tuning process should introduce a tendency
for models to be centered on the observations and we show
that the CMIP ensembles tend to show some truth-centered
behavior in their historical simulations for variables which
are commonly used as tuning metrics. Structural errors and
limited degrees of freedom prevent the models from being
tuned to match the observations exactly, and any structural
errors (e.g., limited resolution) which are common amongst
models will tend to shift the ensemble mean to ‘truth plus
common structural error’. Such effects can potentially intro-
duce ‘indistinguishable’ features when simulating observed
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climate, but do not justify the use of this paradigm to explain
the spread of models in historical simulations which we know
have been somewhat tuned to best replicate the past climate.
It is thus expected that the multi-model mean of historical
simulations might lie closer to observations than would be
expected in a truly indistinguishable ensemble, but not so
close that the ensemble can be described as perfectly truth-
centered. Hence, in reality neither framework is entirely
representative of the weakly truth centered CMIP ensembles
that we appear to see.

[18] Structural model error may be difficult to separate
from intermodel differences in simple statistical tests, even
for the present day, but it is even harder for a prediction where
no direct verification is available, and skill must be estab-
lished indirectly [Knutti, 2008; Tebaldi and Knutti, 2007].
The transition from a ‘truth plus error’ to ‘indistinguishable’
or ‘overconfident’ interpretation reflects the increasing
dominance of model responses which are uncorrelated to
observable quantities within the ensemble, or to initial model
perturbations (i.e., the prediction or projections). We argue
that it is not obvious how the interpretation of CMIP for the
present can be transferred to projections. Ensemble spread in
the future is increasingly dominated by different representa-
tions of physical processes and feedback mechanisms so
although the future simulations are truly indistinguishable,
the spread of present day simulations tells us little about
whether the ensemble is under- or overdispersive in the
future.

[19] Only in the special case in which a relationship exists
between observables and future response can the ensemble
remain truth-centered in the future. Otherwise, the observa-
tions have already been used and are no longer useful to
distinguish between the individual members. The above
conceptual arguments are illustrated here for climate model
ensembles and a toy models, but apply to any set of different
numerical models calibrated to observations.

[20] Model spread in ensembles like CMIP3 or CMIP5
may be too large if data is not fully used to tune each
member, or if model structural errors are large. It may be too
small if all models are structurally similar but incomplete, or
if models do not sample the uncertainty in observations. If
uncertain processes are missing, the spread is also likely to
be underestimated (e.g., carbon cycle uncertainties). If the
ensemble spread was much too large, we should be able to
reduce it by weighting models or selecting a subset of them
[Knutti, 2010]. The fact that we are unable to reduce the
spread, and largely unable to agree on appropriate metrics to
do so suggests that the ensemble spread in CMIP3 is not
strongly overestimated, and the interpretation of the poste-
rior as some sort of lower bound on model uncertainty is not
unreasonable. So our inability to find constraints within
CMIP3 should maybe not be interpreted as a failure but as a
success in converging to an ensemble of (almost) equally
plausible models given limitations in observations, our
understanding, and computational capacity.
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