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ABSTRACT

The diverse set of Earth system models used to conduct the CMIP5 ensemble can partly sample the un-

certainties in future climate projections. However, combining those projections is complicated by the fact that

models developed by different groups share ideas and code and therefore biases. The authors propose a

method for combining model results into single or multivariate distributions that are more robust to the

inclusion of models with a large degree of interdependency. This study uses a multivariate metric of present-

day climatology to assess both model performance and similarity in two recent model intercomparisons,

CMIP3 and CMIP5. Model characteristics can be interpolated and then resampled in a space defined by

independent climate properties. A form of weighting can be applied by samplingmore densely in the region of

the space close to the projected observations, thus taking into account both model performance and in-

terdependence. The choice of the sampling distribution’s parameters is a subjective decision that should

reflect the researcher’s prior assumptions as to the acceptability of different model errors.

1. Introduction

At the time of writing, the Working Group I contri-

bution to the Fifth Assessment Report of the In-

tergovernmental Panel on Climate Change (IPCCAR5)

has been published, summarizing the current best syn-

thesis of projections for future climate change, andmany

of the studies referenced therein draw from a database

of climate simulations that form phase 5 of the Coupled

Model Intercomparison Project (CMIP5). This multi-

model ensemble comprises models with markedly dif-

ferent histories and degrees of independence. We use

‘‘independence’’ here to describe the degree of shared

formulation and bias between models rather than in a

strict statistical sense of orthogonality. Whereas some

models have undergone a largely isolated development

process, others share significant fractions of their code

with other models in the ensemble.

Throughout the different generations of the CMIP,

efforts have been made to integrate results into com-

bined projections that represent some consensus view

with associated uncertainty (see Tebaldi and Knutti

2007; Knutti 2008; Knutti et al. 2010a; Knutti 2010).

Many of these methods (and even a simple multimodel

mean projection) are only appropriate if each model

represents an independent estimate of future climate

change. However, the reality of the CMIP ensembles is

that some model pairs are closely related (Masson and

Knutti 2011; Knutti et al. 2013; Pennell and Reichler
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2011) and that some models exhibit more skill than

others in reproducing past and present climate (Gleckler

et al. 2008; Reichler and Kim 2008; Knutti et al. 2013).

The CMIP ensembles have been used on multiple

occasions to propose ‘‘emergent constraints’’ or re-

lationships between unknown climate parameters and

observable quantities (e.g., Hall and Qu 2006; Fasullo

and Trenberth 2012; Sherwood et al. 2014). However,

the lack of independence of CMIP ensemble members

can potentially complicate the interpretation of such

studies (Caldwell et al. 2014). The sample size in CMIP3

is small (on the order of 20 models), and if one considers

that many models share components and ancestry, then

one could argue that it is effectively much smaller

(Pennell and Reichler 2011; Annan and Hargreaves

2011; Jun et al. 2008). It is therefore difficult to dem-

onstrate the significance of a single correlation that ex-

ists in the multimodel ensemble. Caldwell et al. (2014),

Knutti et al. (2010b), and Abe et al. (2009) show that the

correlation between the present-day and future climate

patterns exhibited in models is often not significant.

Potentially worse, the very presence of replicated models

in the archive could potentially create artificial correla-

tions (Caldwell et al. 2014), and the screening of predictors

will likely find correlations that have no physical basis

(DelSole and Shukla 2009; Masson and Knutti 2013). In-

cluding the CMIP5 models increases the sample size but

does not necessarily solve the problem if there is sufficient

common code in successive generations of each model.

It is self-evident thatmodel replication has the potential

to bias both multimodel means and emergent constraints

(or correlations between observables and unknowns), but

many more sophisticated Bayesian studies (e.g., Greene

et al. 2006; Furrer et al. 2007; Tebaldi and Sansó 2009) also
make the assumption that model members are inde-

pendent estimates of future change, making it imperative

that the degree of interdependency is quantified. More-

over, if it is found that model and code replication in the

CMIP archives is commonplace, then strategies must be

found for addressing these issues.

This assumption of model independence leads to

greater confidence with an increasing number ofmodels,

which has led some to state that such methods implicitly

consider the ensemble of future projections to be cen-

tered around truth (Knutti et al. 2010a). Others suggest a

conceptual framework where individual models are in-

distinguishable from truth (Annan and Hargreaves

2010). This approach would consider the model en-

semble to represent a sample from a distribution, which

in an ideal case is the same distribution from which the

real climate is drawn. Rougier et al. (2013) present a

similar argument, that if one considers models in an

ensemble as exchangeable and equally plausible, then

one need only make limited subjective judgements

about whether a randomly drawn sample should lie

closer to the true system state or to the ensemble mean

in order to make robust predictions from the ensemble.

Bishop and Abramowitz (2013) propose a slightly

different variant of the indistinguishable interpretation,

that the observed climate is drawn from a set of potential

‘‘replicate earths’’ that represent different realizations

of plausible internal variability of the climate system.

Furthermore, they propose that an imperfect ensemble

could be transformed to be centered on a best estimate

of the true distribution of replicate earths with a linear

transformation of the existing ensemble, which is opti-

mized to be as close as possible to the observed data and

weighted by error independence.

Finally, such questions of conceptual model para-

digms are not necessarily absolute or fundamental (in

that ensemble spread can be partly an artifact of model

tuning approaches); Sanderson and Knutti (2012)

suggest a that small subset of high performing models

are indistinguishable from truth and a number of outlier

models create some truth-centeredness in the ensemble

as a whole. They also highlight that the statistical

properties can change over time, such that the degree of

truth-centeredness of the ensemble for the present day

tells us little about the interpretation of the ensemble for

the future.

The present study outlines a method for combining

results from a multimodel ensemble, without relying on

potentially spurious correlations between observables

and model response and without making prior assump-

tions about a conceptual model framework. This tech-

nique can use both model output and observations but

must satisfy two major requirements. First, the technique

must allow for the selection of desirable characteristics

such as a low climatological error compared to observa-

tional products, or a skillful historical transient projection

(we focus less on the exact form of the metric, leaving this

decision to the individual researcher depending on the

projection or process in question). Second, we seek to

reduce the bias in the multimodel projection arising from

multiple closely related models present within the en-

semble. This would be manifested in an extreme case

when the same model is submitted twice to the ensemble.

In this first of two studies on this topic, we address this

question for univariate or bivariate quantities, such as

climate sensitivity or the temperature and precipitation

change in a single region; producing continuous distri-

butions for such quantities which are insensitive to model

replication andwith the potential to includemodel quality

information. The method as we present it does not

‘‘solve’’ the problem of model interdependency, since our

resampling is still sensitive some of the properties of the
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original ensemble (model replication, and the presence of

poor models). However, we do present a method that

allows the researcher to explore the use of different

sampling strategies for an ensemble of opportunity such

as CMIP. In an accompanying paper (Sanderson et al.

2015), we propose a discrete method more suited to high-

dimensional, multivariate gridded data.

2. Methods

a. Data preparation

Our analysis assesses model quality and inter-

dependence using output from model simulations of

present-day climatology of a number of model

diagnostics summarized for easy reference in Fig. 1. One

could also use transientmetrics to assess themodels, and

the impact of such a changewill be addressed in a further

study. We do, however retain information for each

month from the model output, so the model climatology

includes a representation of both seasonality and annual

mean state. Our approach combines a large number of

gridded model outputs (listed in Table 1) into a high-

dimensional metric. Using the recent historical mean

state removes the necessity for concurrent data for all

components of the metric and allows for easier com-

parison of the models in CMIP5 and its predecessor,

CMIP3. It also avoids some issues with poorly con-

strained or missing radiative forcing components in

some models.

FIG. 1. Graphical representation of the methodology for this study.
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It is necessary to reduce the dimensionality of this

problem to a small number of statistically independent

variables. This is achieved, as in Sanderson and Knutti

(2012), using a multivariate EOF analysis. We use his-

torical climate simulations of the satellite era and vari-

ables are chosen such that observations or reanalysis

products are available for the same time period and that

the same spatial and temporal resolution. We perform

an EOF analysis such that the observations are treated

as an ensemble member, and thus both models and ob-

servations can be represented as points in the same

orthogonal space.

This projection allows the computation of a simple

model–observation discrepancy for the recent historical

mean state of the climate (hereafter stated as simply

‘‘bias’’) for each model. This bias term can be used to

produce a model weighting, but its exact form depends

on the choice of variables used in the multivariate

metric. For the purposes of the present study, we have

endeavored to produce a number of univariate and

multivariate metrics from monthly mean, gridded

latitude/longitude data from radiative fluxes, surface

temperature, and precipitation, as well as zonal mean

temperature and humidity data on model levels.

We now construct a distance metric used to evaluate

both intermodel and model–observation distances. We

construct this metric in a space defined by a multivariate

EOF basis set. For each available model in the CMIP3

and CMIP5 ensembles, monthly climatologies are ob-

tained from a single historical simulation by averaging

monthly mean fields for the time period 1 January 1970–

31 December 1999. In the case of CMIP3, we use the

20c3m experiments, using ‘‘run1’’ from each simulation

(with the exception of CSIROMk3.0, for which the first

available run is ‘‘run2’’). For CMIP5, we use the ‘‘his-

torical’’ experiment and the r1i1p1 simulations in each

case. In the case of CCSM4, we also consider the sen-

sitivity of the technique to internal variability by re-

peating the analysis with all available simulations in the

CMIP5 archive (r1i1p1, r1i2p1, r1i2p2, r2i1p1, r3i1p1,

r4i1p1, r5i1p1, and r6i1p1 for the historical runs).

Data were downloaded from the Earth system grid for

five two-dimensional fields [surface temperature (TS),

total precipitation (PR), outgoing top-of-atmosphere

shortwave radiative flux (RSUT), outgoing longwave

top-of-atmosphere flux (RLUT), sea level pressure

(PSL)] and two three-dimensional fields [atmospheric

temperature (T) and relative humidity (RH)]. Three-

dimensional fields are zonally averaged. Corresponding

observational monthly mean climatologies are obtained

by averaging available years for each field type, as shown

in Table 1 [sensitivity of results to the choice of variables

is presented in section 3e(2)].

We then prepare the data in the same fashion as

Sanderson and Knutti (2012), and we repeat the critical

steps (listed in the supplementary material of that pa-

per) here for convenience. Data from each model and

dataset are regridded onto a 2.58 by 3.758 latitude/

longitude grid, and zonal vertical fields are regridded

onto a 2.58 latitude grid at 17 pressure levels. For each

variable, values are area weighted and for vertical fields,

weighted by the pressure difference between the top and

bottom of the corresponding level.

To usefully concatenate the multivariate field for EOF

analysis, the variables must be normalized for each to

represent a similar amount of variance in the multimodel

ensemble. We derive a single normalization factor (a

scalar) for each variable type from the observational fields

(see Table 1). For two-dimensional fields, we calculate the

intermonthly variance of tropical grid cells and take the

average gridcell variance over the tropics to obtain a

single normalization factor for each variable. For three-

dimensional fields, we take the intermonthly variance of

zonally averaged fields in the tropics between 700 and

400hPa, and then average the variances over the spatial

domain to obtain the normalization factor. Normalization

factors for each variable are calculated from the obser-

vations only, and the corresponding output from each

model is divided by the same factor (see Table 1 for global

normalization values).

The data are then prepared for the EOF analysis; the

elements of each two- and three-dimensional field are

then each reformed into a one-dimensional vector. If

any elements of the vector in any single model or in the

observations are missing, the corresponding elements

are removed from all models. Each of the field vectors is

then normalized by the number of remaining elements,

and the second and third fields are concatenated into a

TABLE 1. Observational datasets used as observations in Fig. 2.

Field Source Reference Years Global normalization

TS HadCRUT3 Brohan et al. (2006) 1970–2000 2.09K

PR GPCP Adler et al. (2003) 1979–2001 30.1Wm22

RSUT CERES-EBAF NASA (2011) 2000–05 25.8Wm22

RLUT CERES-EBAF NASA (2011) 2000–05 3.32mmday21

T AIRS* Aumann et al. (2003) 2002–10 0.28K

RH AIRS* Aumann et al. (2003) 2002–10 12.12%
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single vector length n (where n5 358 248 when all fields

are utilized). The m vectors are combined to form a

matrixX sizem by n (wherem is 51, comprising 50 CMIP

model vectors and one observational vector). The en-

semble mean value is calculated by averaging the (m)

rows of the matrix, and this is subtracted from each row

to yield the anomaly matrix DX. The method effectively

treats the observations as an additional ensemble

member, so the observed data are included in the mul-

timodel mean. The analysis is also repeated with a

number of different subsets of the entire set of variables

[section 3e(2)]. In these cases, the matrix DX is formed

using only that subset, and the analysis continues in the

same fashion.

b. Accounting for intermodel similarity

1) COMPUTING PAIRWISE DISTANCES

It is desirable tominimize the impact of correlated fields

in DX, and so we perform an EOF analysis to reduce the

data to a small number of orthogonal components. The use

of the EOF prefilter combines fields that are trivially

correlated (such as adjacent grid cells) into a single mode.

A singular value decomposition (SVD) is performed on

DX and truncated to t modes to obtain the dominant

modes of multivariate ensemble variability such that

DX5UlVT , (1)

where U is an orthogonal matrix of model loadings (size

m by t) whose columns are the eigenvectors of themodel

covariance matrix DX(DX)T, l (size t by t) are the ei-

genvalues of DX(DX)T, and V (size n by t) are the ei-

genvectors of the field covariance matrix DX(DX)T. The
dimensions are sorted by decreasing eigenvalue, such

that the basis set can be truncated to a smaller number of

modes t (where m modes define a complete basis that

can be used to reconstruct the original data, so for a

truncated case t,m).

Themodel loadingsU now define a t-dimensional space

(where t is the truncation length of the SVD) in which

intermodel and observation-model Euclidean distances

may be defined [see section 3e(1) for justification]. The

intermodel distances can then bemeasured in aEuclidean

sense in the loadings matrix, such that the distances dij
between two models i and j can be expressed as

dij 5

(
�
t

l51

[U(i, l)2U( j, l)]2

)1/2

. (2)

For the present-day cases, the model–observation

distance di(obs) is calculated using the row of U corre-

sponding to the observations.

2) MULTIDIMENSIONAL SCALING

Multidimensional scaling (MDS) is a technique that

can be used to take the distance matrix d and create, if

possible, a distribution of points in a two-dimensional

space (R) that exhibit approximately the same in-

terpoint distances as those derived from the original

t-dimensional space. The input to themultidimensional

scaling step is the distance metric dij, where i and j

refer to different models in the ensemble, or to the

observational point (making m points in total).

Euclidean distances dij are calculated from theU values

[section 2b(1)], which are concatenated to form a

matrix dimensions m by t, where the final row corre-

sponds to the observations. We apply a metric MDS

algorithm to solve for R, which minimizes a perfor-

mance function or stress for the distribution of model

dissimilarities. We require a solution where R has

dimensions m (where m is the number of samples, 51)

by p (where p is 2, our desired dimensionality). Ap-

proximate intermodel distances in R can be described

as follows:

dij(R)5

"
�
p

s51

(xis 2 xjs)
2

#1/2
. (3)

The algorithm thus minimizes a ‘‘metric stress’’ term s1,

taken here as Kruskals Stress-1 formula (Borg and

Groenen 1997):

s1(d,R)5

8>>>><
>>>>:
�
m

i51
�
i21

j51

[dij 2 dij(R)]
2

�
m

i52
�
i21

j51

d2ij(R)

9>>>>=
>>>>;

1/2

, (4)

which is equal to the RMSE in the replication of the

intermodel distance distribution divided by the sum of

squared distances. The optimal solution is obtained with

the SMACOF (scaling by majorizing a convex function)

algorithm (de Leeuw 1977). Again, a row of thematrixR

corresponds to observations.

The solution is approximate, so to reduce the de-

pendency of later results on any one specific optimization,

we repeat the process for 20 instances with randomized

initial values for R. A separate interpolation is conducted

for each of the 20 cases, and the distributions for the in-

terpolant are averaged to form the final result. This was

found to be sufficient to produce smooth and re-

producible distributions in the later part of the study.

Section 3c(2) examines the accuracy of this assumption in

more details.
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c. Ensemble interpolation

Interpolation is the process of estimating the values of

unknown points lying within the convex hull of a set of

known data points. While there are numerous tech-

niques whereby the interpolation in the reduced space

might be achieved, but we perform a Delaunay tri-

angulation in two dimensions (Delaunay 1934) using the

points defined by each model. To interpolate in this

space, we use ‘‘natural neighbor interpolation’’ (Sibson

1981), which has the advantage of producing a contin-

uous interpolating surface between sampled points.

Once the interpolant is generated in the MDS space, it

can be used to resample that space with different prior

distributions.

To perform the resampling procedure, we create a p5
two dimensional distribution of points in theMDS space

and use the interpolant detailed above to predict a dis-

tribution of the unknown variable corresponding to that

distribution. We then consider a number of idealized

prior distributions defined in theMDS space that we can

use to produce distributions for the variable of interest.

We first consider a uniformly sampled prior where the

space is sampled regularly in the two dimensions, with

103 regularly spaced intervals in between the maximum

andminimum values ofR in each dimension, making 106

domains in total. If a domain lies outside the convex hull

of the ensemble, it is rejected and if a domain lies within

the ensemble, the corresponding unknown value is cal-

culated using the interpolation scheme detailed above.

The resulting distribution is normalized by the number

of domains within the convex hull to form a single dis-

tribution. The process is repeated for N5 20 instances,

with different random seeds to initiate the MDS algo-

rithm. The final distribution is the sum of the distribu-

tions from each instance, divided by the number of

instances. Note that although the MDS step makes the

interpolation process tractable, a uniform sample in the

MDS space does not necessarily lead to a uniform

sample in the space defined by U, as the MDS result

effectively defines a surface that is folded to pass

through points in a higher-dimensional space.

The process for implementing the Gaussian truth-

centered prior is slightly different. A 106 member two-

dimensional normal distribution is created, centered on

the values of R corresponding to the observations. The

standard deviation of the distribution determines how

tightly the observations should constrain the result, and

should ideally reflect uncertainty in the positioning of

the observed point. Uncertainty could arise from natural

variability or errors in the observations or reanalysis. If

we consider model internal variability to be a proxy for

natural variability [although Haughton et al. (2014)

suggest that this might be a slight underestimate], con-

sidering these terms alone was found to produce a prior

sufficiently narrow that the majority of models were

eliminated from consideration (in other words, most

models are inconsistent with observations within the

range of internal variability and observation un-

certainty). Hence, in order to provide a weaker con-

straint on the space, we choose a prior with a standard

deviation equal to that of the CMIP5 archive by calcu-

lating the variance of R for the rows corresponding to

models in CMIP5.

The use of the CMIP5 ensemble variance to define the

prior is clearly an arbitrary decision, forced by the lack

of alternative. The variance itself can clearly be influ-

enced by model replication or by the presence of very

poor models in the archive. Hence, to resample the en-

semble in this fashion does not address fully the issue of

model interdependency. However, using this length scale

allows us to resample the space at a scale that keeps the

influence of the (relatively) better performing models

while reducing the effect of the (relatively) poorer per-

forming models. Sensitivity to this value is illustrated by

repeating the calculation with a distribution with half the

variance of R. Corresponding values for the unknown

quantity are calculated for each of the 106 points using the

interpolation scheme described above.

This basic process can be used to interpolate simul-

taneously for a large number of model properties.

Hence, for each of the 106 ‘‘metamodels,’’ interpolated

values are calculated, along with loadings for EOFs that

can be used to estimate the metamodel’s position in the

EOF space, and thus calculate its bias from observa-

tions. Because the interpolation is based upon a De-

launay triangulation, each metamodel can also be

expressed as a combination of three or fewer component

models from the original CMIP archive.

3. Results

a. Intermodel similarity

We first present results showing the distribution of

pairwise distances between models in both CMIP3 and

CMIP5, plotted in Fig. 2. The distances are Euclidean

distances in the nine-dimensional space defined a mul-

tivariate EOF analysis described in section 2b(1).

Several properties of the ensemble are apparent

from Fig. 2; some (in particular older) models (GISS-

E-H, IAP FGOALS-g1.0, INM-CM3, NCAR PCM1;

expansions of all model names are available online at

http://www.ametsoc.org/PubsAcronymList) appear to

be outliers with large distances to all other models and

to the observations. Models with common heritage
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(GFDL, CCSM/CESM, MIROC, etc.) tend to be closer

to each other than they are to other models in the en-

semble.Models from different institutions with common

components (such as CCSM4 and NorESM1) are cor-

rectly identified as near-neighbors in the ensemble. The

intermodel distances are found to be relatively robust to

changes in EOF truncation length and to changes in the

diagnostic fields used [see section 3e(1)], and very sim-

ilar to those found by Knutti et al. (2013), in which the

supplementary material discusses the intermodel re-

lationships at greater length.

This similarity information is clearly relevant to the

issue of some models in the CMIP ensembles being

overrepresented, and one could potentially use it to

FIG. 2. A graphical representation of the intermodel distance matrix for CMIP3, CMIP5, the multimodel mean, and a set of observed

values. Each row and column represents a single climate model (or observation). Each box represents a pairwise combination, where

warm colors indicate a greater distance. Distances are measured as a fraction of the meanmodel bias in the combined CMIP3 and CMIP5

ensembles.
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down-weight highly replicated models within the en-

semble [see Sanderson et al. (2015) for further thinking

on this]. However, a weighting approach would still re-

sult in a discrete and to some degree arbitrary sample of

climate properties, where in some cases a continuous

distribution would be preferable. A possible approach

might be to interpolate values directly within the trun-

cated EOF space, but this is infeasible because the

number of models is comparable to dimensionality of

the space, which effectively reduces the problem to a

linear regression with global predictors of unknown

variables. Furthermore, robust emergent constraints on

future climate behavior in multimodel ensembles are

rare and may be spurious (Caldwell et al. 2014; Huber

et al. 2011).

b. Multidimensional scaling

Our proposed solution is to use multidimensional

scaling (MDS) to represent themodels and observations

as points on a two-dimensional surface, the distribution

of which approximately preserves the intermodel dis-

tances in the EOF space. This has a number of advan-

tages; first, it allows the construction of a continuous,

smooth interpolant of climate properties between

models in the archive. This interpolant is not dependent

on any global relationships or emergent constraints

existing to relate observable quantities to unknown

quantities because it is simply a surface fitted through all

ensemble points without requirements for monotonic

behavior over the domain. The process does make the

assumption, however, that model states can be locally

interpolated. For example, if one model has a state p(1)

and a similar model has a state p(2), the process assumes

that p(3)5 [p(1)1 p(2)]/2 is also a possible model. Al-

though it might not be possible to construct the model

p(3) (just as it would not be possible to produce a model

that behaves like the CMIP multimodel mean), it is a

useful construct because it gives us the possibility of

experimenting with different sampling strategies.

If there are no global relationships between the pre-

dictor state (in this case, the position in theMDS space),

and the predicted quantity, preferentially resampling

the surface more densely close to the observations will

produce a similar distribution to resampling the surface

uniformly, which allows us to conclude that the di-

agnostics used to construct the MDS space are not

useful for constraining the variable we might be in-

terested in. However, if such relationships do exist, and

the relevant predictor is included in the calculation of

the MDS space, then sampling the interpolated surface

close to the observed point will result in a tighter con-

straint on the variable of interest than the uniformly

sampled case.

The MDS process uses the matrix of dissimilarities

(Fig. 2) to form a distribution of points in a two-

dimensional space, where the distance between models

best approximates the intermodel distances shown in

Fig. 2 [the algorithm used in this study is described in

section 2b(2)]. Uncertainty due to the approximations

arising from the process can be sampled by conducting

multiple realizations. Sample results for a single calcu-

lation are shown in Fig. 3, where the subset of points

corresponding to CMIP3 and CMIP5 are shown in

Figs. 3a and 3b and the combined ensemble calculation

is shown in Fig. 3c.

In each case, the pairwise intermodel distances ap-

proximate those plotted in Fig. 2 (as do the distances

frommodels to observations). Clearly defined clusters of

models correspond to models from different institutions

(e.g., all Hadley Centre models or all the GFDL models

lie closer to each other than they do to any other model

in the CMIP archive). There are some cases where

models are effectively submitted more than once; for

example, in CMIP3, CCCMA-CGCM3.1 is submitted at

two different resolutions and in CMIP5 somemodels are

submitted both with and without interactive chemistry

(e.g., HadGEM2-ES and HadGEM2-CC). In each of

these cases, the algorithm positions these models at

negligible distances from each other. Newer model

versions often stay close to their predecessors, sup-

porting the idea of some evolutionary process in which

models are improved or changed (mutation), successful

concepts or code are shared (cross-breeding), and poor

models are eliminated (selection).

The MDS space attempts to represent intermodel

differences in the nine-dimensional EOF space on a

two-dimensional surface. As such, its dimensions are no

longer associated with a single physical pattern. Thus, by

building an interpolated surface in this space, we do not

require the existence of global relationships between

predictors and predictands; rather, we assume only

that a model that is close to another model in the MDS

space (and therefore also close in the EOF space) is also

likely to have a similar value of the predictand, in the

absence of any other data. As an example, Fig. 3

demonstrates a linearly interpolated surface for equi-

librium climate sensitivity (the equilibrium global mean

surface temperature response to a doubling of carbon

dioxide, hereafter S) using the known values in the

CMIP3 and CMIP5 ensembles (see section 2c for details

on the interpolation). TheMDS process is conducted for

the combined CMIP3/CMIP5 ensemble (Fig. 3c); for

consistency, the same 2D coordinates are used to repre-

sent the models for the CMIP3 (Figs. 3a and 3b, re-

spectively). Although the model coordinates are identical

in the combined CMIP3/5 case and the individual CMIP3
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FIG. 3. Graphical representation of sample MDS results for (a) CMIP3,

(b) CMIP5, and (c) combined CMIP3/CMIP5 ensembles. The concentric circles

represent Euclidean distance from the observational projection in the space,

meaning better performing models lie closer to the origin. Ellipses are centered

on the observed projected point, while their radii represent the standard de-

viation of the ‘‘Gaussian’’ and ‘‘narrow’’ distributions in the two dimensions of

theMDS space; there is also an ellipse representing the spread onewould expect

from climate variability alone. Each symbol represents one model in the en-

semble, with symbols of the same color generally representing models from the

same institution. Numbers in brackets indicate whether a model is in the CMIP3

or CMIP5 archive. Colored shading indicates interpolated values for S.
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and CMIP5 cases, a separate interpolation of climate

sensitivity is carried out in each case.

Figures 3a and 3b show qualitatively that CMIP5

contains a relatively larger number of models with a

comparable bias to the best performing models in

CMIP3, consistent with the results of Knutti et al.

(2013). This means that the interpolated surface for S in

Figs. 3b and 3c has more points to constrain it in the

region close to the observations than in Fig. 3a.

c. Univariate projections

1) PROBABILISTIC DISTRIBUTIONS

We propose forming posterior distributions for un-

known climate quantities of interest with an appropriate

prior defined in the MDS space. We consider some

idealized possibilities; a uniform prior, equivalent to

correcting for dependence but ignoring bias, which

samples the space uniformly within the ‘‘convex hull’’ of

the ensemble (the convex hull represents the outer

boundaries of the largest possible polygon formed about

the available models) and two Gaussian priors centered

on the observations (further details in section 2c).

In an ideal case, the radius of model acceptance would

be governed by internal variability—and thus the

model’s skill score would represent the chance that the

model’s climatological state would be produced in by

the real world climate variability. However, we find that

the variance due to internal variability alone is orders of

magnitude smaller than that due to the spread in mul-

timodel bias [a similar result is suggested by Haughton

et al. (2014)]. We illustrate this effect in Fig. 3 by pro-

jecting all six available members in the CMIP5 archive

from CCSM4 onto the MDS space in the same manner

as before, and measuring the standard deviation of that

projection in the two dimensions. These distances are

represented as the smallest gray circle surrounding the

observations in Fig. 3. Assuming that CCSM4 variability

is a reasonable proxy for real-world climate variability,

all models in the CMIP5 and CMIP3 would be an order

of magnitude or more farther from the observations

than could be explained by internal variability. Thus,

any resampling conducted using natural variability as

the radius of acceptability would then effectively be a

point sample of the interpolated surface, and would rule

out all models in the original CMIP archive.

We must therefore adopt a more pragmatic approach,

where the width of the distribution is essentially a sub-

jective decision as to what degree the researcher be-

lieves that the observations constrain the available

models. In this case, we choose the width of the distri-

bution such that the variance of the interpolated distri-

bution is equal to that of the original ensemble. This

emphasizes the relative skill of the different points in the

ensemble, without distinguishing too harshly between

the weight allocated to the better performing models.

This is clearly subjective, so we test the implications of

using a tighter constraint by producing a second set of

distributions with a variance half that of the original

ensemble, and repeating the analysis as before (hereaf-

ter referred to as the ‘‘narrow’’ prior).

We begin by using the interpolant to produce a dis-

tribution for a known quantity, in this case global mean

surface temperature (TS) between 1970 and 2000.

Figure 4a shows the distributions for TS for the CMIP3,

CMIP5, and combined ensembles as well as continuous

distributions derived from the ensemble interpolation

strategy described in the previous section, for three

priors: ‘‘Gaussian’’ and narrow (which are both centered

on observations and illustrated by the concentric circles

in Figs. 3a–c), and ‘‘uniform,’’ which samples the entire

interpolated surface R uniformly. The plot shows that

there is a perhaps surprising variation in the historically

simulated global mean temperatures in the CMIP3 and

CMIP5 archives, with the entire ensemble range span-

ning almost 3K. The plot also shows that the CMIP3/5

interpolated distributions derived from the Gaussian

and narrow priors havemedian values within 0.1K of the

observed value, while the uniformly sampled distribution

is biased 0.4K low in TS, similar to the uninterpolated

raw output of the combined CMIP3/5 ensemble.

Clearly, one would expect the method to perform well

in this case because the observed value of TS is part of

the combined metric used to create the observational

point in Fig. 3. If one considers the distributions de-

rived using variables other than TS, the median of the

resampled distribution is farther from the observed

value of global mean temperature (but the observed

value lies within the 10th and 90th percentiles of the

distribution irrespective of the variables used to cre-

ate the MDS space).

We can also produce distributions for unknown as-

pects of future climate. For example, distributions for S

using each prior are shown in Fig. 4b. Using either prior,

the resampled distributions for S are smooth, and the

median value for climate sensitivity lies between 3 and

3.5K for all variable choices and model selections (see

Fig. 4b). Weighting the combined CMIP3/CMIP5 en-

semble up-weights the importance of the low-bias and

high-sensitivity models in CMIP5 such as MPI-ESM-

LR, CESM1-CAM5, and CanESM2 and down-weights

some of the low-sensitivity outliers from CMIP3 such as

NCAR PCM1, INM-CM3, and IAP-FGOALS-g1.0.

This tends to increase the lower bound on climate sen-

sitivity as the prior becomes narrower (the 10th per-

centile for climate sensitivity is 2.5, 2.8, and 2.9K using
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FIG. 4. Cumulative distributions for (a) global mean historical surface temperature, (b) climate sensitivity,

(c) transient climate response, and (d) ocean heat uptake efficiency assuming different priors in the interpolated

space depicted in Fig. 3, using ‘‘ALL’’ variables. Thick solid curves show distributions for CMIP3 (red), CMIP5

(blue), and the combined ensembles (gray) where the space is sampled with a Gaussian distribution centered on

the observed climate. Dashed lines show distributions resulting from uniform prior sampling within the convex

hull of the ensemble distribution. Stepped thin lines indicate histograms of the original distributions within each

ensemble. Bars and whiskers at the top of the plot indicate the 90th and 99th percentiles of the distribution when

the calculation is repeated for different subsets of the full variable set (QT is zonal mean temperature and

precipitation, PR is surface total precipitation, TAS is surface temperature, RAD is top-of-atmosphere short-

wave and longwave fluxes, and ALL is all variables combined).

5160 JOURNAL OF CL IMATE VOLUME 28



the unweighted, Gaussian, and narrow priors re-

spectively). Figure 4c tells a similar story for transient

climate response, decreasing the width of prior results in

an increase in the lower bounds for TCR (1.3, 1.6, and

1.7K using the unweighted, Gaussian, and narrow

priors, respectively). The upper bound on ocean heat

uptake efficiency is constrained toward lower values as

the distribution is tightened, with a 90th percentile of

1.2, 0.9, and 0.9Wm22K21 for the unweighted, Gauss-

ian, and narrow priors respectively (the lower bound is

relatively unaffected).

2) ASSESSMENT OF THE METHOD

In the introductory section of this paper, we set out to

address two issues with sampling unknown parameters

frommodel ensembles of opportunity, with the inclusion

of low-quality outliers and the potential for model rep-

lication biasing the ensemble result. In this section, we

present some evidence to demonstrate that we have

indeed addressed these issues to some extent.

Figure 5a serves two purposes; first it shows that the

distances from models to observations after the MDS

process (averaged over 20 iterations) are tightly related

to the original distances from models to observations in

the original EOF space. The plot shows the distance of

each model in the ensemble to the observed point in

both the original EOF space and the MDS space,

showing that the two are highly correlated (although the

plot shows that very small distances are slightly under-

estimated and large distances overestimated relative to

their original values). If the distances are taken as a

measure of model bias, it can also be seen that the re-

sampling process can effectively eliminate consideration

of those models with a large bias when forming a pos-

terior distribution for an unknown quantity. If we be-

lieve that the calculated bias is informative, a tight prior

centered on observations allows us to satisfy the first

requirement, namely that very poor models should not

influence our result.

Figure 5b attempts to illustrate how successful our

method is for addressing the second requirement; that

duplicated models should not influence our result. We

assess model replication with a simple k-means cluster

analysis, using the EOF loading matrix, U (sizedm by t),

allowing 14 clusters. The models associated with each

cluster are shown in Fig. 5b, again showing much of the

structure whichmight be expected from Figs. 2 or 3, with

models from the same institution tending to fall in the

same cluster. The histograms in Fig. 5b show how much

weight is allocated to each different cluster in the original

CMIP3/5 ensembles, as well as in the resampled distri-

butions. In the former case, the histogram simply in-

dicates the number of models in each cluster, with some

being highly represented (such as cluster 4, the Hadley

Center models, or cluster 8, the GFDL models) and

some with only one member (such as cluster 13,

IAP FGOALS).

To evaluate the weight of a given model n in the re-

sampled ensembles, we use the samemethod that we use

to interpolate S or TCR in section 2c, but instead we

interpolate a vector that is 1 for the element n, and

0 elsewhere. Each interpolated model will then have a

value between 0 and 1 that represents the fractional

contribution of model n. This can be repeated for each

value of n to show the relative makeup of each in-

terpolated model in terms of its CMIP3 and CMIP5

constituents. Integrating these values over all the

models in the resampled Gaussian and uniform priors

then yields the contribution of each of the original

CMIP3 and CMIP5 models to those resampled ensem-

bles. These are combined according to the clusters

defined in Fig. 5b, showing whether the relative contri-

bution of each cluster is increased or decreased by the

resampling process.

The results for the uniform sampling strategy show a

subtle redistribution of weight amongst the clusters. The

weights associated with clusters with large numbers of

models in the original ensemble such as 4, 8, and 12 are

slightly reduced in the uniformly resampled ensemble,

whereas clusters with a low representation (such as 13

and 5) are slightly increased. The effect is subtle, though,

and the histogram associated with the original CMIP3/5

ensemble tends to indicate that the weights associated

with major modeling centers are all well represented

(i.e., the original ensemble is not strongly biased by

overreplication of a single model). The weighted

Gaussian and narrow ensembles show, as expected, a

shifting of weight toward clusters that contain models

with a low bias.

Finally, we address the issue of how accurate the

method is for predicting S for an out-of-sample model,

and whether indeed this is necessary. Figure 5c is cal-

culated by repeating the method of section 2c, but

omitting a single model when constructing the in-

terpolation surface for S. The resulting interpolated

surface is then used to predict the out of sample value of

S for the missing model, plotted as a function of the

actual value of S in Fig. 5c. The process is repeated for 20

iterations of theMDS process, as before—with themean

result and the spread given by the position of the

markers and whiskers in the plot.

The predicted value is correlated with the actual value

with a coefficient of 0.66, and there are clearly some

occasions where the interpolation fails. For example, if

CESM-CAM5 is removed from the ensemble, the pre-

dicted sensitivity is considerably less than the actual
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FIG. 5. (a) Comparison of model to observation Euclidean distance in the original

nine-dimensional EOF space and the equivalent distance in the two-dimensionalMDS

space. (b) A k-means cluster analysis using climatological EOF loadings to group

CMIP5 models into 14 clusters. Vertical bars indicate the relative weighting associated

with each cluster in the original ensemble, and using different resampling priors. (c) A

‘‘leave one out’’ plot where a model is excluded and the interpolation process used in

section 2c is used to predict themodel’s climate sensitivity; vertical bars show the range

of predicted values over 20 iterations.
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value; this can be understood by considering that al-

though CESM-CAM5 has a relatively similar climate to

its predecessors (in the context of CMIP variability, at

least, shown in Fig. 2), it also has a considerably greater

climate sensitivity. Therefore, the ‘‘best guess’’ that the

model would have a similar value of S to its forebears is

in this case incorrect.

We would argue, however, that the strength of this

technique does not ultimately hinge on its ability to

predict an out of sample case, because we do not claim

that the exact value of the interpolant at the point in the

MDS space associated with the observations is our best

estimate of the true value of S. In the absence of any

additional information, we propose that the space in

between models can be interpolated with a smooth

surface and we can then sample that surface using the

prior of our choosing, rather than simply accepting the

prior governed by CMIP’s sample of opportunity. Un-

less two models are positioned at identical positions in

the MDS space with different values of S, an interpolant

can be found, irrespective of whether a global relation-

ship between S and observable quantities exist (even if

two models are at identical positions, it can be remedied

by including additional diagnostics where the models do

differ into the distance metric). Moreover, if there is

such a global relationship between the diagnostics that

make our distance metric and S, then this method will

utilize it (with an appropriate prior) by excluding re-

gions with a large bias and their associated unlikely

values of S. The resulting distribution still remains a

reallocation of weight between values of S from the

original ensemble and should not therefore be inter-

preted as a PDF for S because the method is not in-

formative values of S beyond the original ensemble

range, nor can common systematic error (such as

overly coarse resolution or common missing processes)

or parametric uncertainties (i.e., a consideration of

perturbed versions of each of the GCMs) influence

the result.

d. Multivariate projections

Our analysis can be extended to multivariate pro-

jections by creating an interpolated surface for each

unknown variable in turn. The space can then be jointly

sampled for variables of interest. For CMIP5 simula-

tions, the temperature and precipitation changes were

taken as the difference between the 30-yr annual mean

values in 2070–2100 in a single realization of RCP8.5 and

the values in the historical simulation years 1970–2000.

For CMIP3, the future values were taken from years

2070–2100 in the A1B scenario but temperature and

precipitation changes were scaled by the ratio of median

warming between 1980–2000 and 2090–2100 for RCP8.5

(4.6K) and SRES A1B (3.4K) in Rogelj et al. (2012).

This is clearly an approximation, the A1FI scenario

would be a much closer match to RCP8.5 in terms of net

radiative forcing, but was not available for most of the

models in the CMIP3 archive.

For each local projection (in this case, precipitation

change or temperature change in 2100), a surface is

constructed in the p 5 two dimensional space as in

section 2c.We follow the ‘‘weighted’’ method, creating a

106 member truth-centered ensemble in the space and

interpolating temperature and precipitation changes for

each member. Thus, a joint distribution for temperature

and precipitation change is constructed. Again, the

process is repeated for N5 20 random starting condi-

tions, with the plots in Fig. 6 showing the summation of

the results.

In Fig. 6, we show a demonstration of the multivariate

capability with temperature and precipitation pro-

jections for 2100 underRCP8.5 for a number of different

regions. In cases where there exists a strong correlation

between temperature and precipitation change in the

original ensemble [as in the Arctic (Fig. 6a) or Ama-

zonia (Fig. 6c)], this correlation is preserved in the re-

sampled distribution.

Note, as for the univariate case, these distributions

should not be interpreted as PDFs, but rather as

resampled histograms of possiblemodel behavior. A full

probabilistic treatment would need to additionally ac-

count for the impact of common error present in all

models (i.e., limited resolution or missing processes) as

well as terms accounting for uncertainty in individual

model projections arising from physical parameter un-

certainty (Stainforth et al. 2005) and initial condition

uncertainty Deser et al. (2012).

e. Sensitivity studies

1) EOFS AND TRUNCATION CHOICES

Some subjective decisions are required in the inter-

pretation and subsequent usage of the SVD conducted

in section 2b(1), and we discuss these at greater length

here. In previous studies like Masson and Knutti (2011),

the intermodel distances were calculated without the

SVD stage, simply calculating distances in the space

defined by the anomaly matrix, X. For the purposes of

this study it is necessary to decrease the dimensionality

(and interdependence) of the data in order to establish

prior expectations of near-neighbor distances.

Euclidean distances are measured in the U loading

matrix, and each mode in that matrix has the same

variance over the ensemble. This means that a single set

of covarying diagnostics in X will not dominate our

distance metric (as all those fields would be represented
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FIG. 6. Regional projections of annual mean temperature and precipitation changes for RCP8.5 (years 2070–2100) and recent clima-

tology (years 1970–2000). For CMIP5 simulations, direct output from the RCP8.5 simulation is used. For CMIP3 simulations, changes are

taken from the A1B simulation and scaled by the ratio of forcing in RCP8.5 to A1B. Each point represents a single climate model

projection for the respective region (as defined in Fig. 3). The curve on each axis represents the univariate likelihood distribution for

temperature and precipitation change independently, whereas the shaded contours indicate joint likelihood derived from

a Gaussian prior.
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in a single mode). However, this also means that higher,

noisy modes will have a significant influence on our

distance metric unless we truncate the basis set at the

appropriate point. In Fig. 7, we present results for a

range of possible truncation lengths (note that the basis

set for the CMIP5 and CMIP3 only case is necessarily

different from the combined CMIP3/CMIP5 case be-

cause only a single ensemble has been used).

The analysis produces very similar distributions for

climate sensitivity, transient climate response, and

ocean heat uptake efficiency for values of t between 5

and 12 (see Fig. 7). At these truncation values, the re-

sults are not highly sensitive to the choice of variables

included in the analysis or to the choice of whether

CMIP3, CMIP5, or both ensembles are considered.

For values of t of less than 5 and greater than 13, we

see a larger dependency on the choice of ensemble and

variable. When t, 5, only the leading patterns of model

difference are retained, which results in large inter-

model distances between different model families (e.g.,

CESM and GFDL models) and very small distances

between models in the same family (e.g., CESM-CAM5

FIG. 7. Figure illustrating the sensitivity of the box-and-whisker plots shown in Fig. 4 to EOF truncation length.

Filled circles show the median of the distribution for (a) climate sensitivity, (b) transient climate response, and

(c) ocean heat uptake efficiency while the unfilled circles show the 10th and 90th percentiles of the distribution for

EOF truncations from 1 to 20. Colors, as illustrated in the legend, show the distributions using different ensemble

subsets (CMIP3, CMIP5, or the two combined) or different variable subsets (surface temperature, top of atmosphere

radiative fluxes, or precipitation, all for the combined ensembles).
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and CESM-CAM4). For values of t greater then 13, the

intermodel distance matrix becomes increasingly less

well correlated with the absolute distance matrix as the

higher modes reflect only subtle differences between

models, effectively adding noise to the intermodel dis-

tance matrix. We thus opt for a truncation to nine

modes, which we defend primarily because this choice

produces distributions that are robust to variable and

model choices (Fig. 7).

2) CHOICE OF OBSERVATIONAL CONSTRAINT

In section 3e(1), we show how the intermodel distance

matrix is influenced by choices of EOF truncation and

weighting. Here, we continue the calculation to test the

impacts of using different observations to constrain S

and TCR. The box-and-whisker plots in Figs. 4b–d show

the implications of using different combinations of ob-

servations to form the intermodel distancematrix for the

combined CMIP3/CMIP5 ensemble. The ALL case

uses a multivariate EOF constructed as before, TAS

constructs the EOFs using gridded surface temperature

fields only, RAD uses only gridded top-of-atmosphere

shortwave and longwave radiation fields, PR uses grid-

ded total precipitation, and QT uses only zonally aver-

aged temperature and specific humidity onmodel levels.

In each case, the analysis is repeated as before, with a

Gaussian prior for the interpolated models with a vari-

ance equal to that of the original ensemble. It is found

that the upper bound for both S and TCR is relativity

insensitive to the choice of variable used to constrain the

models (the 85th percentile is between 4.0 and 4.1K in

all cases). However, the lower bound on S is more sen-

sitive, with the highest lower bound occurring in the

ALL case (2.9K for ALL case, down to 2.6K for the PR

case). The implication of this is that some of the lower-

sensitivity metamodels can be eliminated using some

diagnostics, but not with others.

4. Discussion

Our method uses projections from nonindependent

climate model simulations to form a continuous likeli-

hood distribution by forming a space using observable

diagnostics, and interpolating unknown information

throughout this space. Model quality information can be

incorporated by sampling the space more densely in the

region close to the observational projection. The

resulting projections (or distributions of projected un-

known climate parameters) are largely insensitive to the

addition or removal of similar or identical models, or to

the addition of models with a strong climatological bias.

As in Masson and Knutti (2011) and Knutti et al.

(2010b), we find a strong level of self-similarity between

models from the same institution, which in almost all

cases lie significantly closer to each other than they are

to other models in the ensemble. This remains true for

models that have changed a large portion of code be-

tween releases. This observation raises the question of

why particular model biases can outlive an almost

complete change in codebase. Various plausible expla-

nations can be proposed; first, a sociological component

to the tuning process is likely to exist, as model de-

velopers tend to span multiple model versions and it is

likely that they each choose a preferred set of metrics

and datasets with which to tune or evaluate their model.

Systematic studies have found that differently tuned,

and yet equally plausible, versions of a GCM can be

produced by varying these priorities (Mauritsen et al.

2012). This choice of metrics, together with the meth-

odologies used to tune parameters and choice of pa-

rameters themselves, may imprint a ‘‘developer’s

fingerprint’’ upon models from a certain institution that

persists for multiple development cycles. Also, in many

GCMs, the different components of the coupled system

are not all updated at the same time. The staggered

tuning of the coupled system could cause a ‘‘memory’’ of

the biases of previous models into the newer models.

Our method constructs a surface using observable

diagnostics, in which both the models and observations

can be plotted. This surface allows for the interpolation

of unknown quantities, such as climate sensitivity, so

that with appropriate prior centered on observations, a

distribution for unknown quantities can be formed by

interpolating between known values from the multi-

model archive. These distributions cannot be wider than

the original ensemble distribution for S and posterior

likelihoods are judged only on the relative quality of the

models’ simulation for the present day, but othermetrics

of performance could be included. In effect, this process

resamples the range of model behavior present in the

original ensemble, but in a fashion that greatly reduces

the bias arising from highly interdependent ensemble

members and rewarding more plausibility to models

with a better mean climatology.

We demonstrate the method by producing CDFs for a

number of unknown climate variables. The method al-

lows us to construct idealized resampled ensembles and

to study the effect of that resampling on variables of

interest. For example, we find that, based on mean cli-

matology at least, that a value of climate sensitivity of

less than 3K becomes significantly less likely when a

narrow prior centered on observations is chosen. How-

ever, the results presented in this study used various

aspects of the mean climatology as the constraint on

unknown climate variables. Space limitations prevent us

from investigating what constraintsmight emerge from a
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consideration of transient skill metrics [such as model

expressions of spatial fingerprints corresponding to

greenhouse gas forcing as in Hegerl et al. (2000)] in the

framework presented here, so we leave a comprehensive

analysis of different metrics and their potential to con-

strain unknown climate variables to a further study.

Knutti et al. (2010b) suggested that ensemble-wide

correlations between observable quantities and climate

sensitivity are rare in the CMIP3 ensemble, although the

results of Fasullo and Trenberth (2012) seem to provide

at least one counterexample. Caution must be used,

however, in inferring significance in correlation alone,

given that the effective number of degrees of freedom

assessed from intermodel variability is significantly

smaller than the number of models in the ensemble

(Annan and Hargreaves 2011).

Our results are subject to a number of caveats. At

present, all model errors are considered only in a rela-

tive sense without addressing common systematic model

errors in the ensemble, missing processes or feedbacks

and uncertainty estimates for the interpolation process

itself. We thus interpret the resulting PDFs as a lower

bound on the systematic and parametric uncertainty.

Clearly, the method can provide no information on the

response of models that are not sampled in the ensem-

ble, but it can reduce the bias arising from model in-

terdependency. One can consider the distributions as a

resampling of S in the multimodel archive in such a way

that models with large interdependencies are not over-

represented and the region of the space corresponding

to more plausible climatologies is more densely sam-

pled. The resulting distributions are based on in-

terpolation only, and thus have a value of zero outside of

the original ensemble range of S. Also, if all models are

biased low or high in their prediction due to a feedback

that does not exist in the current climate, such a re-

weighting cannot correct for that bias.

The cases where the interpolated models are sampled

with a Gaussian prior centered on the observational

projection are subject to a number of caveats. Our

resampling method, as presented, is conditional on the

original ensemble variance, which is itself related to

model replication in the ensemble, so although the

weight of replicated models is reduced through our

method, replication can still potentially influence the

resulting distribution indirectly through the means of

the ensemble variance. This issue could be addressed in

future study with an effort to define a prior in-

dependently of the ensemble itself.

Our use of a single observed point as the center of the

Gaussian prior implies that we consider that the internal

variability is not a significant factor in the context of

model bias. We defend this decision by showing that the

model spread arising from an ensemble of initial con-

dition simulations from a single model has a significantly

lower variance in the MDS space than the CMIP en-

semble. However, this justification is subject to some

caveats, first that the single model (CCSM4) represen-

tation of variance is representative of the real world,

critically that the model’s variability is not significantly

underdispersive. This is notably not the case when

considering decadal trends, as shown in Deser et al.

(2012) where an initial condition ensemble from the

same model, CCSM4 produces a comparable spread to

the CMIP5 archive for near term projections. But, when

considering the mean state bias as we do here to con-

struct our state vector, we show that model-generated

internal variability is negligible and therefore remain

confident in our decision to consider the observational

projection (and each model projection) as individual

points in the MDS space.

In addition to this assumption, there is clearly also an

issue of the degree to which the observational products

represent reality. To thoroughly explore these assump-

tions would require a detailed assessment of each ob-

servational dataset used for surface temperature,

precipitation, top-of-atmosphere fluxes, etc., and is

clearly beyond the scope of this study. Hence, the results

of the study carry the caveat that the bias is measured

relative to the observational products used, and biases in

these products would thus bias our results also.

By taking the model–observation distance matrix as a

measure of model skill and interdependency, we (and

most other studies on the matter) are also assuming that

each of the models has been optimally tuned to match

the observations. We effectively assume that the bias

that each model exhibits is therefore irreducible by

further tuning, and therefore is representative of the

accuracy of the model’s representation of climate pro-

cesses. We also assume, as in Masson and Knutti (2011)

and Bishop and Abramowitz (2013), that correlation of

model errors represents a measure of model in-

terdependency. Both of these assumptions may be de-

bated by considering that different groups may use

different observational targets (either by using different

products entirely or by concentrating on skill in specific

regions). To disentangle these systematic and para-

metric sources of model bias and similarity, one would

require a coordinated superensemble of perturbed

GCM simulations from a number of institutions, a cur-

rently nonexistent resource that we would strongly ar-

gue would be a great asset to the community.

Multivariate applications of the method are demon-

strated with joint temperature/precipitation pro-

jections. Future work will examine in more detail the

behavior of such distributions, especially the potential
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for multiregion distributions. Before such an effort

would be meaningful for any given regional projection,

care must be taken to ensure that the metrics considered

are relevant to the processes in question. The ‘‘one size

fits all’’ global metrics considered in this study are used

to illustrate the concept here butmight not be applicable

to regionally specific problems.

Placing this work in the context of established litera-

ture is difficult. Clearly, the use of observations to con-

strain more likely ensemble members draws parallels

with other multimodel studies that have attempted to

find global relationships in the ensemble (Hall and Qu

2006; Fasullo and Trenberth 2012) or with perturbed

physics studies that constrain simulations by linear re-

gression (Piani et al. 2005) or by more complex transfer

functions (Knutti et al. 2006). However, in the light of

recent works that highlight the complications of em-

ploying global correlations between observables and

responses in the multimodel ensemble (Knutti et al.

2010b), we explicitly do not require them to exist in

general, allowing the response surface to vary continu-

ously across the observable space.

For the wider question of ensemble interpretation,

our approach creates the potential for the researcher to

create an interpolated ensemble whose emulated cli-

mate distribution is centered on observations by con-

struction. Hence, the resulting distributions for future

climate change are weighted toward interpolated

models with the least mean-state bias for present-day

simulations. However, those projections themselves

have the potential to be quite diverse if they are not

strongly constrained by the recent historical mean state

bias. In the absence of additional observational (or

physical) constraints on the future climate response, we

believe this is an appropriate representation of the un-

certainty in the projections themselves. In addition, the

concept of ‘‘model democracy’’ in the original CMIP

archives is a fallacy given the results of models that are

highly replicated can potentially carry too much weight.

Our interpolated ensemble can be seen as an attempt to

restore real model democracy among models, at least in

as much as they can be distinguished by their simulated

climatological output.

5. Conclusions

We propose a novel method for combining results

from an ‘‘ensemble of opportunity’’ such as CMIP3 or

CMIP5, where the ensemble distribution allows for

significant interdependencies between members and the

potential for models of varying performance and com-

plexity. The method employs a pairwise distance metric

between ensemble members and observations, which

provides information both on model similarity and cli-

matological bias. A multidimensional scaling approach

allows the intermodel distances to be represented on a

low-dimensional surface that can then be used to in-

terpolate unknown climate parameters with a prior

distribution of the researcher’s choice, effectively al-

lowing the potential for the ensemble of opportunity to

be resampled in a coherent fashion.

The technique has been demonstrated on the CMIP3

and CMIP5 ensembles, where we use a multivariate

climatological metric to evaluate intermodel distances,

and produce resampled distributions for a number of

univariate and multivariate model outputs. The sam-

pling distributions used here are presented as sensitivity

studies; a uniformly resampled distribution reduces the

weight allocated to highly replicated models (as com-

pared to the original ensemble) and a resampled distri-

bution centered on observed climatology but with

variance equal to that of the original ensemble results

in a down-weighting of CMIP3 models with very low

climate sensitivity and poor climatological simulations,

which subsequently is reflected in an increase in the

minimum expected value of climate sensitivity for the

metrics considered.

Although we find that the CMIP5 and CMIP3 en-

sembles are not heavily biased toward a particular re-

sult, this is largely fortuitous. We propose that with

the increasing availability of multiple model versions,

perturbed physics ensembles, and sharing of model

code, the use of only ‘‘model democracy’’ becomes in-

creasingly hard to justify. New methods that account for

model dependence and model performance such as the

approach presented here are required. However, de-

fining appropriate metrics to evaluate models appro-

priateness for future climate projections remains a

formidable challenge.
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