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[1] Complexity and resolution of global climate models are steadily increasing, yet the
uncertainty of their projections remains large, particularly for precipitation. Given the
impacts precipitation changes have on ecosystems, there is a need to reduce projection
uncertainty by assessing the performance of climate models. A common way of
evaluating models is to consider global maps of errors against observations for a range of
variables. However, depending on the purpose, feature-based metrics defined on a
regional scale and for one variable may be more suitable to identify the most accurate
models. We compare three different ways of ranking the CMIP3 climate models: errors in
a broad range of climate variables, errors in global field of precipitation, and regional
features of modeled precipitation in areas where pronounced future changes are expected.
The same analysis is performed for temperature to identify potential differences between
variables. The multimodel mean is found to outperform all single models in the global
field-based rankings but performs only averagely for the feature-based ranking. Selecting
the best models for each metric reduces the absolute spread in projections. If anomalies
are considered, the model spread is reduced in a few regions, while the uncertainty can

be increased in others. We also demonstrate that the common attribution of a lack
of model agreement in precipitation projections to different model physics may be
misleading. Agreement is similarly poor within different ensemble members of the same
model, indicating that the lack of robust trends can be attributed partly to a low

signal-to-noise ratio.
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different approaches to climate model evaluation, J. Geophys. Res., 116, D10118, do0i:10.1029/2010JD014963.

1. Introduction

[2] In the discussion on climate change, trends in the
hydrological cycle are of particular interest since they are
expected to have severe consequences for societies and
ecosystems. End users of climate model output with an
interest in hydrological changes therefore need information
about the quality of the predictions. However, model dis-
agreement about precipitation is large, in particular on a
regional scale. Although climate models are getting con-
stantly more complex, unambiguous statements about future
changes in precipitation patterns are still difficult to provide
[Trenberth et al., 2003]. The aim of this study is to define
new metrics to evaluate the ability of current climate models
to simulate regional precipitation and to investigate if future
projection uncertainty can be reduced when considering the
best models in these regions.

[3] The literature available on the evaluation of cli-
mate models is broad and many ways of assessing model
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performances have been proposed. Although each individual
method provides interesting information, so far no widely
accepted suite of metrics to evaluate the performance of
climate models exists for precipitation or any given climate
variable in general [Rdisdnen, 2007; Intergovernmental
Panel on Climate Change, 2007; Knutti et al., 2010a].
Several studies [Lambert and Boer, 2001; Reichler and Kim,
2008; Gleckler et al., 2008; Pincus et al., 2008] evaluate the
performance of climate models for a range of climate vari-
ables and on a global scale by using statistical measures to
quantify the errors. Reichler and Kim [2008] ranked the
climate models based on a single performance index,
defined as the aggregated errors in simulating the observed
climatological mean states of several climate variables.
Gleckler et al [2008] and Pincus et al. [2008] used
straightforward statistical measures (e.g., root-mean-square
error, correlation, bias or standard deviation) to evaluate
models against observations on a global scale for given
variables. All three studies conclude that the MultiModel
Mean (hereafter MMM) shows better agreement with the
observations than any single model.

[4] However, evaluations on a global scale summarized
for many variables are not useful in some specific cases. A
model performing well for a given variable, season and
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region might perform poorly for another variable, season
and region [Whetton et al., 2007]. Gleckler et al. [2008] also
stress the fact that in their evaluation, the relative merits of
each model in simulating individual processes or variables
are lost. Gleckler et al. [2008] and Pincus et al. [2008]
further state that all models have distinctive weaknesses in
simulating specific variables.

[5] A range of studies concentrated their evaluation on
precipitation. As a response to anthropogenic forcing, tem-
perature is expected to increase in all regions of the globe
while precipitation is expected to increase in the tropics and
high latitudes and decrease in the midlatitudes [4/len and
Ingram, 2002]. The regional character of the expected
changes suggests a need for a model evaluation on that
scale. Giorgi and Mearns [2002] divided the area over land
into regions and calculated for each a measure combining
information on model performance and convergence.
Tebaldi et al. [2004] performed an evaluation based also on
the criteria model bias and model convergence. Both studies
aim at reducing the uncertainty range for future regional
precipitation by weighting the models according to the cri-
teria mentioned above. However, no information on indi-
vidual model performance is delivered, which would be of
interest for end users of climate model output from other
scientific communities. For example, precipitation projec-
tions are needed as input for hydrological models and the
large model disagreement is an issue. Information about the
quality of the predictions/simulations of each model might
be a way out, although recent studies tend to show that a
good performance during a given time period does not
guarantee a good performance in a future time period [Jun
et al., 2008; Knutti et al., 2010b].

[6] Finally, some studies concentrated on one region of
interest. Phillips and Gleckler [2006] evaluated the ability of
the models to simulate the seasonal cycle of precipitation
globally and in certain regions. They show that while the
MMM outperforms any single model at simulating conti-
nental precipitation on a global scale, in some regions, this is
less clearly the case. Pierce et al. [2009] found that over the
western United States and for a detection and attribution
purpose, forming the MMM is a better way to make use of
the information than selecting the best models. Contrary to
this, Perkins and Pitman [2009] as well as Smith and
Chandler [2010] see a reduction in future projection
uncertainty by selecting the best models for precipitation for
regions over Australia.

[7]1 Knutti et al. [2010b] showed that most statistical
metrics like the root mean square error do not correlate
strongly with future projections, and they suggest that fea-
ture-based evaluations could provide additional useful
information. A feature-based metric considers regional
changes that are robust and can be understood physically.
This is different from the approach chosen by several
regional studies cited above, where the regions were defined
quite arbitrarily to partition the land part of the Earth. Here,
we define such feature-based metrics and evaluate the
models’ ability to reproduce them compared to observations.
This study consequently aims to provide information on the
individual performance of the CMIP3 models for the present
climate, as well as information about the persistence of these
performance measures in a future climate. Further, the re-
sults obtained for precipitation are compared with the ones
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obtained for temperature in order to identify potential dif-
ferences between variables.

[8] The data are briefly presented in section 2, while
section 3 provides a pointwise evaluation of the modeled
precipitation during the observation period. Section 4 in-
vestigates reasons for the lack of model agreement in the
future. The definition of the metrics used for the model
evaluation along with the results presented as a ranking are
shown in section 5. The projections of the corresponding
precipitation indices are discussed in section 6 and conclu-
sions are provided in section 7.

2. Data

[v] The model simulations for precipitation and tempera-
ture used in this study stem from 24 of the global coupled
atmosphere ocean general circulation models (AOGCMs)
made available by the World Climate Research Program
(WCRP) Coupled Models Intercomparison Program Phase 3
(CMIP3) [Meehl et al., 2007a] (see http://www-pcmdi.llnl.
gov/about/index.php for further information). One ensemble
member of each model of the precipitation field from the
simulation of the 20th century and the scenario A1B is used,
and they are equally weighted for the multimodel mean.
During the observation period (1979-2004), the models are
evaluated against a merged product of precipitation with
global coverage, the Global Precipitation Climatology
Project (GPCP) Version-2 monthly precipitation analysis
[Adler et al., 2003]. Another global precipitation product
exists and is used as a secondary reference data set, the
Climate Prediction Center’s (CPC) Merged Analysis of
Precipitation (CMAP) [Xie and Arkin, 1998]. GPCP is the
reference data set for the evaluation performed in section 5
because CMAP uses atoll data over oceans, which leads to
artifacts in trends [Yin et al., 2004]. As a comparison, the
same evaluation of the CMIP3 models is performed for
temperature. Here, the ERA40 reanalysis data set
[Uppala et al., 2005] is used as reference for the time
period 1979-2001.

3. Pointwise Evaluation

[10] Figure 1 summarizes the modeled and observed
precipitation mean values as well as the bias of the MMM
for boreal winter and summer. The mean precipitation of the
MMM cannot be compared directly with mean precipitation
of GPCP since the former is an average of multiple reali-
zations and the latter represents only one realization. How-
ever, the main features of the precipitation patterns are
captured by the MMM but with errors in their amplitude and
exact location. The Spearman rank correlation coefficients
between the MMM and GPCP are highly significant, p = 0.9
in DJF and p = 0.89 in JJA. However, the bias of the MMM,
expressed in percent compared to the mean values of GPCP,
is in general large over both oceans and land. Reasons for
that are probably a combination of model errors and
observational uncertainties plus a contribution of internal
variability. As a comparison, the bias of the CMAP data set
with respect to the GPCP data set is nonnegligible and in
some regions, on the same order of magnitude as the one of
the MMM [Yin et al., 2004].
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Figure 1. (a) Mean precipitation (1979-2004) values during December to February (DJF) and June to
August (JJA) in GPCP. (b) Mean precipitation values (1979-2004) during DJF and JJA for the MMM.
(c) Bias of the MMM in percent compared to GPCP (1979-2004) during DJF and JJA. Grid points are
stippled when GPCP lies outside 2 standard deviations of the CMIP3 models. (d) Bias of the MMM in
percent compared to GPCP (1979-2004) during DJF and JJA. Grid points are stippled when the bias is
larger than twice the internal variability estimated from those CMIP3 models that provided at least 4

ensemble members (see text).

[11] The biases are shown twice on the third and fourth
rows of Figure 1, each time with a different criterion for
stippling. In the third row of Figure 1, grid points are stip-
pled where the observations lie outside +2 standard devia-
tions of the 24 CMIP3 models (“Bias stippling 1”). For
those grid points, the biases are larger than one would
expect given the internal variability of the models and their
structural differences. The stippled area is 6.1% of the globe
in DJF and 6.7% in JJA, which is only slightly more than
what one would expect to occur by chance with the criteria
of 2 standard deviations. This outcome tends to indicate that
the observations are indistinguishable from the models (see

discussion in section 6.2) given the large model errors. The
criterion for stippling in the fourth row of Figure 1 is defined
from an estimate of the internal variability of the models for
the period 1979-2004. The CMIP3 models that have more
than 4 ensemble members (i.e., CGCM3.1(T47), CCSM3,
ECHAMS/MPI-OM, MRI-CGCM2.3.2 and PCM) are
selected, and for each of these models, the standard devia-
tion of their ensemble members is calculated. Then the
average of these standard deviations is used as a measure of
internal variability. Grid points are stippled where the
absolute value of the bias is at least twice as large as this
average standard deviation (“Bias stippling 2”). The fact that
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Figure 2. (top) Precipitation trends (1980-2004) during December to February (DJF) and June to
August (JJA) in GPCP. Grid points are stippled when the trends are significant at the 95% confidence
level. (middle) Precipitation trends (1980-2004) during DJF and JJA for the MMM. (bottom) Precipita-
tion trends (2000-2099) during DJF and JJA for the MMM. For MMM panels, grid points are stippled if
at least 18 out of 24 models agree on a significant trend (95% confidence level) with the same sign. Note
that the variability in the MMM panels is strongly reduced compared to observations due to the averaging

of many ensemble members.

72.5% in DJF and 82.6% in JJA of the whole globe is
stippled according to this criterion implies that the observa-
tions are inconsistent in many areas with respect to the
modeled range of natural internal variability, either because
of observational errors, model errors or because the models
underestimate internal variability.

[12] The observed and modeled precipitation trends for
the observation period (1980-2004) as well as the modeled
precipitation trends for a 100 year time period in the future
(2000-2099) are represented in Figure 2. In the observations
(GPCP), many small-scale structures in the trends can be
seen and finding a physical explanation for them is not
obvious. Significant drying (at the 95% confidence level)
seems to dominate in the polar regions as well as over the
west coasts of the continents while significant wettening is
mostly located over Greenland, the Northern Territories and
in the Indian ocean. The trends of the MMM from 1980 to

2004 are shown in Figure 2 (middle). If 18 out of the 24
CMIP3 models agree on the sign of significant change, the
grid point is stippled, which is never the case during the
observation period. On the one hand, this criterion mini-
mizes the possibility that models have the same sign of the
trend just by chance and on the other hand, it is not too
stringent to prevent that the criterion is never met, which
would not be very informative in the case of future trends.
For the MMM, a weak wettening of the high latitudes and
the equatorial region can be recognized, while some regions
in the midlatitudes experience a slight drying but these
features are not robustly simulated by the models. Again, the
trends in precipitation of the MMM are not expected to
agree perfectly with the trends of GPCP for the same rea-
sons described above. The amplitude in the trend patterns is
smaller for the MMM than in the observations due to the
fact that natural variability is reduced in the MMM because
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Figure 3. (top) Trends of the seven runs of CCSM averaged (2000-2099) for December to February
(DJF) and June to August (JJA). Grid points are stippled if at least six out of seven runs agree on a sig-
nificant trend with the same sign. (middle) Trends of seven CMIP3 models averaged together (2000—
2099) for DJF and JJA. Grid points are stippled if at least six out of seven models agree on a significant
trend with the same sign. (bottom) The ratio of the standard deviations of the seven CMIP3 models and

the seven runs of CCSM.

of model averaging [Rdisdnen, 2007]. Possible reasons for a
discrepancy between observed and modeled precipitation
trends can be many fold: low signal-to-noise ratio, obser-
vation uncertainties, inadequate parameterizations in the
models as well as incomplete representation of the forcings
or too low spatial resolution. In addition, it must be stressed
that the precipitation trends are nonsignificant in many
regions for GPCP and the CMIP3 models, which indicates
that at such short time scales, natural variability dominates.

[13] For the future time period, a wettening of the high
latitudes and of the equatorial region, along with a drying of
the midlatitudes can be recognized. Model agreement
(stippling if 18 out of the 24 CMIP3 models agree on the
sign of significant change) is generally confined to the high
latitudes during the cold season. It is further interesting to
note that the drying is a less robust feature than the wet-
tening. The agreement criterion is rarely reached in regions
were a drying is expected because there, variability is large
and mean precipitation low which leads to highly variable

percentage changes in the CMIP3 models. However, the
chosen agreement criterion is severe, and robust precipita-
tion changes can still be expected in areas where there is no
stippling in the bottom row of Figure 2 [see Meehl et al.,
2007b, Figure 10.9] as an alternative criterion for model
agreement).

4. Model Agreement

[14] As shown in section 3, large uncertainties are asso-
ciated with changes in the precipitation patterns in a warmer
climate since model agreement is poor compared to tem-
perature for example. Spread in projections is caused by the
differences between the models and by internal variability.
To investigate whether the poor model agreement is actually
due to differences between the models or rather caused by
the nature of precipitation itself, the trends from 2000 to
2099 of the 7 available runs of the CCSM3 model and of a
subset of 7 reasonably independent CMIP3 models
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Index Name Definition Domain
African index AFI = Pryja 13°S-35°S, 14°E-42°E
Amazonian index AMI = Pryja 24°S—-1°N, 31°W-59°W, land only
Asian index ASI = Pryja - Proye 10°N-29°N, 70°E-118°E
Australian index AUI = Pryjs 10°S—40°S, 107°E-138°E
Central American index CAI = Prya 10°N-29°N, 110°W-62°W
High-latitudes index HLI = Prpg 52°N-71°N, land only
Mediterranean index MEI = Prja 29°N-49°N, 11°W-37°E

Storm tracks index

STI = EDJFB - Prpjra

zone A (35°S-46°S)/zone B (49°S-60°S)

*Prpyr (Pryja) denotes the mean precipitation during DJF (JJA) in the corresponding domain.

(CGCM3.1(T47), CSIRO-MK3.5, GFDL-CM2.1, INGV-SXG,
MIROC3.2(medres), ECHAMS/MPI-OM, MRI-CGCM2.3.2)
are computed (see Figure 3). The conclusions however do
not depend on the exact choice of the subset but likely hold
for all possible subsets. While the exact location of spatial
patterns of significant precipitation change are slightly dif-
ferent between the 7 CCSM3 runs and the 7 CMIP3 models,
the wettening of the high latitudes and the equatorial
region along with drying in some areas in the midlatitudes
are captured by both. Again, a model agreement criterion is
defined: grid points are stippled if at least 6 out of 7 runs/
models agree on a significant sign of change. The percentage
of area stippled is larger in the 7 CCSM3 runs (13.6% in DJF
and 11.8% in JJA) compared to the 7 CMIP3 models (9% in
DIJF and 5.8% in JJA), as can be expected. Nevertheless, the
area stippled for the 7 CCSM3 runs is surprisingly small and
still in the same range as for the 7 CMIP3 models. This result
indicates that even if the uncertainty caused by model dif-
ferences is eliminated, internal variability still contributes
strongly to the lack of agreement in precipitation projections.

[15] The relative importance of internal variability com-
pared to model differences can be further quantified. The
ratio of the standard deviations of the CMIP3 subset com-
pared to the CCSM runs is computed in Figure 3 (bottom).
The global average of this ratio is roughly 3 (2.7 in DJF and
2.95 in JJA), meaning that the contribution of model dif-
ferences is around 3 times larger than that of internal vari-
ability in terms of standard variation. While model differences
dominate, this does not imply that reducing model uncer-
tainty in future projections will necessarily improve the
significance of the projected trends. For single grid points
where variability is large, the signal may not be significant
even in a perfect model.

5. Ranking

5.1. Method

[16] In this section, the climate models are evaluated on a
regional scale using feature-based metrics. These metrics are
designed to focus on areas that reveal a clear signal of
change in precipitation over the time period considered. This
has also been the motivation, at least to some extent, of
previous studies [Pitman et al., 2004; Pierce et al., 2009;
Perkins and Pitman, 2009] but with the difference that they
concentrated only on one region of interest. Here the aim
is to go one step further by defining metrics in different
regions of the globe over land and ocean parts and to
compare the performance of the individual models using
several feature-based metrics.
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[17] The selected features are regions where the predicted
precipitation change is robust. They are identified with the
map of the future trends in precipitation of the MMM dis-
cussed in section 4 for two different seasons (DJF and JJA;
see Figure 2, bottom). Eight metrics, which we refer to as
precipitation indices (see Table 1 for definitions) are chosen,
based on the significance of the trends and on the scientific
understanding of the physical processes responsible for
these changes. It is important to emphasize that the eight
precipitation indices have to be regarded as examples and
not as the only set of feature-based metrics possible.

[18] The eight precipitation indices are defined in Table 1.
The storm tracks index (STI) is designed to detect the
poleward shift of the storm tracks in the Southern Hemi-
sphere, where zone A refers to the preferred region of
cyclone activity in the past and zone B to the region where
the storms are expected to pass by in the future [Hoskins and
Hodges, 2005; Previdi and Liepert, 2007]. The African
index (AFI) and the Australian index (AUI) capture the
precipitation decrease over the midlatitudes of the Southern
Hemisphere that are related to the positive trend of the
Southern Annular Mode (SAM) index prevailing since the
climate shift of the mid-1970s [Thompson and Solomon,
2002]. The Asian index (ASI) depicts the expected
decrease of precipitation during the dry season and the
increase of precipitation during the wet season in Southeast
Asia. In the context of global warming, more warming over
land than over the ocean is expected leading to a northward
shift of the lower tropospheric monsoon circulation and
consequently to an increase in mean precipitation during the
Asian summer monsoon [Dairaku and Emori, 2006; Sun
and Ding, 2010]. Changes in the location of the ITCZ are
also expected to reduce precipitation during June, July and
August (JJA) over the Amazon Basin (the Amazonian
index, AMI) [Christensen et al., 2007]. For the Northern
Hemisphere, the high-latitudes index (HLI) captures the
increase in precipitation during December, January and
February (DJF) over the continents [Previdi and Liepert,
2007]. In a warmer climate moisture convergence toward
the convection zones will increase and as a consequence,
moisture divergence in the midlatitudes will be enhanced,
causing a decrease in precipitation [Neelin et al., 2006]. The
most prominent features of this subtropical/lower midlati-
tude drying in the Northern hemisphere are the JJA pre-
cipitation decrease over the Caribbean/Central American
region (captured by the Central American index, CAI) and
the one over the Mediterranean region captured by the
Mediterranean index (MEI), which is also associated with
the soil moisture feedback over land [Rowell and Jones,
2006; Seneviratne et al., 2006].
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Table 2. Definition of the Temperature Indices®

Index Name Definition Domain
African index AFI = Tya 13°S-35°S, 14°E-42°E
Amazonian index AMI = Ty 24°S—1°N, 31°W-59°W,

land only

Asian index ASI =Ty 10°N-29°N, 70°E-118°E
Australian index AUI = Tya 10°S—40°S, 107°E-138°E
Central American index CAI = Tya 10°N-29°N, 110°W-62°W
High-latitudes index HLI = Tpye 52°N-71°N, land only
Mediterranean index MEI = Ty 29°N-49°N, 11°W-37°E
Storm tracks index STI = Tojras zone AB (35°S-60°S)

*Tpsr (Tyya) denotes the mean temperature during DJF (JJA) in the
corresponding domain.

[19] Due to the heterogeneity of primary data, the quality
of the merged gauge-satellite monthly precipitation pro-
ducts, GPCP and CMAP, cannot be expected to be equally
good in the 8 regions where the feature-based metrics are
defined. In general, GPCP and CMAP are more similar over
land than over oceans, simply due to the availability of
gauge measurements [Yin et al., 2004]. Consequently, the
quality of the observation data sets is expected to be better
for precipitation indices defined mainly over land, like the
AFI, AMI AUI and MEI As can be seen on Figure 5, GPCP
is slightly different from CMAP for the ASI and CAI since
these indices are mainly defined over oceans. The largest
differences between both data set are however encountered
for the two metrics defined in the high latitudes, hence the
HLI and STI, where both data sets use different input data
[Yin et al., 2004]. Despite the inherent uncertainties, the
GPCP and CMAP data sets can be regarded as best estimate
data sets of precipitation patterns.

[20] The precipitation indices allow to identify whether
some models clearly perform better than average in regions
where significant changes are expected and where the
physical processes responsible for the changes are thought
to be understood. The spatial pattern of precipitation within
a region is however not evaluated. It is further interesting to
investigate if the good models in a given region also perform
well in this region but for another variable [Whetton et al.,
2007]. We therefore compare the results obtained for pre-
cipitation with temperature. Temperature is chosen because
its signal of change does not strongly depend on the region
considered and the field is relatively homogeneous. For this
reason, temperature indices can be defined in the same
region and for the same season as the precipitation indices
and still be meaningful. The ASI and STI are exceptions
because they describe processes that exist for precipitation
but not for temperature. The ASI and STI for temperature
are therefore simply defined as a temperature average for
one season (see Table 2).

[21] The eight index trends of the MMM from 1980 to
2079 are significant on the 0.01 level for both variables.
Unfortunately, the observational period is short and in case
of precipitation, trends are not significant as discussed in
section 3, making an evaluation of the trends meaningless.
Consequently, the CMIP3 models and the MMM are ranked
according to their ability to simulate the mean value of each
index during the observation period (precipitation index
ranking and temperature index ranking hereafter). The errors
of each model at simulating the mean index value are simply
calculated as difference between the observed index mean
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and the modeled index mean and do not include information
about discrepancies in the spatial structure within the index
domain. To compare and aggregate these performance
metrics, they are converted to a common ranking system. A
rank of 1 is attributed to the model with the smallest error on
the metric considered, a rank of 2 to the second-best model,
etc. While some quantitative information is lost in this
ranking method, it has the advantage that indices with dif-
ferent scales and units can readily be compared in an
aggregated form. Finally, to summarize the performances of
the models over the eight indices, the ranks obtained for
each of the eight indices are summed up, and this sum is
ranked again (lines “Prec ALL” and “Temp ALL” in
Figure 4). The sum of the ranks for the precipitation indices
and the temperature indices is finally ranked in Figure 4c
(“indices”). The motivation for summing the ranks over
different regions and variables is to test if the index-based
results gradually converge to the widely used broad-brush
metrics that summarize performances for a large range of
climate variables on a global scale.

[22] The index ranking is first compared to a ranking
performed on global scale, again for both variables, pre-
cipitation and temperature, only. The root mean square error
(rmse) of each model with respect to the observations and
the spatial correlation between simulated and observed
precipitation and temperature (referred to as the rmse/corr
ranking hereafter) are calculated separately for each vari-
able. The model having the lowest rmse (highest correlation
coefficient) ranks first. In Figure 4c, the “rmse/corr” depicts
a ranking of the sum of the ranks obtained for both variables
on the rmse and the corr ranking, again to identify if by
doing so, the outcomes of the broad-brush metrics can be
reproduced.

[23] Finally, the index and the rmse/corr rankings are
compared to a ranking performed with a broad-brush metric,
which is a version of the ranking on a broad range of climate
variables performed by Reichler and Kim [2008] (RKO0S8
ranking hereafter), updated with more variables and using
four seasons (T. Reichler, personal communication, 2009).

[24] In summary, the RKO08 ranking identifies the model
performance on a global scale summarized for different
climate variables, the rmse/corr ranking provides a picture
of the models’ spatial error with respect to the precipitation
and temperature data on a global scale and the index ranking
allows for the identification of the models that best simulate
local precipitation and temperature features expected to
change in the future due to anthropogenic forcing.

5.2. Results and Discussion

[25] The results of the index rankings for both precipita-
tion and temperature are summarized in Figure 4a. At first
glance, none of the CMIP3 models appears to consistently
outperform the rest. This is particularly obvious in the pre-
cipitation index ranking. Here, each model performs at least
once better and worse than the average, while the MMM
performs average for all indices. The results for the tem-
perature index ranking are only slightly different: again the
models can perform better and worse than average for dif-
ferent indices, except ECHAMS/MPI-OM and the MMM,
which always perform better than average. It is further
interesting to note that there are no significant correlations
among the eight indices for each variable nor between
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Figure 4. (a) Ranks obtained by the CMIP3 models for the eight (top) precipitation and (bottom)
temperature indices, where the “ALL” line summarizes the ranks obtained for all eight precipitation
and temperature indices. (b) The ranks obtained by the CMIP3 models for the rmse/corr ranking for
(top) precipitation and (bottom) temperature. (c) Summary of the performance of the CMIP3 models
for the indices and rmse/corr ranking for both precipitation and temperature as well as an updated version
of the model ranking performed by Reichler and Kim [2008]. Blue and red indicate above- and below-

average performance, respectively.

precipitation and temperature for each index (not shown).
The performances of each model are summarized in the lines
Prec ALL and Temp ALL (see Figure 4). For Prec and Temp
ALL, the MMM ranks eleventh and third, respectively.

[26] For the interpretation of the results, it is important to
keep in mind that even though in evaluation studies the
MMM is often considered as just another model, it is
actually not. By definition, the MMM can perform only
from average up to best but cannot be worse than average,
while each individual model can occupy any place from the
worst up to the best (see also Figures 5 and 6). The results
depicted in the lines Prec ALL and Temp ALL illustrate
the fact that the more indices are included, the better the
performance of the MMM. This outcome is similar to
the findings of Pierce et al. [2009]. This continuously

improving performance of the MMM is partly due to the fact
that it never performs below average, in contrast to the
individual models. However, this does not mean that the
MMM is better at simulating individual index mean values,
but is rather an artefact that arises when more indices are
considered. The MMM never has to compensate for a
below-average performance plus it is favored by the fact
that there is no correlation between the different indices for
both variables. The above-average models are therefore
difficult to identify because when considering regional
features for a given variable, none of the CMIP3 models
consistently outperforms the rest.

[27] Figure 4 also shows the results of the ranking per-
formed on the global scale for precipitation and temperature,
termed as the rmse/corr ranking. Here, and in agreement
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Figure 5. (a—h) (left) Time series and (right) anomalies relative to the observational period of the CMIP3
models, CMAP, and GPCP for the eight precipitation indices. The five best models for each index are
given as dark blue lines, while the black line represents the MMM. An 11 year average is applied to
the time series. The mean value and £1 standard deviation in the year 2079 are shown in light blue (dark

blue) for all CMIP3 models (five best models).

with previous studies [Phillips and Gleckler, 2006; Gleckler
et al., 2008; Pincus et al., 2008], the MMM clearly performs
best for both variables. Averaging the individual models
smoothes out variations and small-scale biases of the pre-
cipitation field, so that errors partly cancel out in the MMM
[Phillips and Gleckler, 2006; Pierce et al., 2009]. Conse-
quently, the MMM is favored by global statistical metrics
because of its relatively small magnitude of biases over the
whole globe and its good representation of the spatial pat-
tern, while feature-based metrics favor a single model
capable of displaying the area mean precipitation over a

given region. Except for the performance of the MMM,
the rmse/corr ranking is quite different for precipitation
and temperature, illustrating that also globally, a model
performing well for a variable might perform poorly for an
other. Further, it is interesting to compare the index ranking
with the rmse/corr ranking for each variable individually.
The Spearman’s rank correlation coefficient between Prec
ALL and Prec rmse is nonsignificant at the 95% level while
it is significant between Prec ALL and Prec corr (p = 0.49).
For temperature, the correlations are also low but signifi-
cant: p = 0.56 between Temp ALL and Temp rmse and

9 of 14



D10118

297 ) CMIP3
a L ]
205 best CMIP3 3
3 = MMM
% 293 ERA40 {2
©
£
c 291 -
Qo 1
= 289
758 10
287 :
308 ]
306C) 1 13
3
X 304 ] IR
(0]
e}
£ 302
C
8 1
< 300/
Ve 1o
298 Y o
<
< 304 e) 1 13
[0
e}
g {
S 302 12
9O
5]
£ 11
< 300
o
5 A °
O 298 ]
303 ]
g 14
x 301 4
9 13
£ 299 §
& 12
C E
& 207F
I 11
é 295 ﬁ
g 10
293 :

1990 2010 2030 2050 2070 1990 2010 2030 2050 2070

SCHALLER ET AL.: EVALUATING CLIMATE MODEL PRECIPITATION

D10118
304
b) 14
%3
13
3 300
©
£
3 12
[
Q 296
o 11
€
<
1o
292
205 13
53
3
12
T 203
C
8
= 11
S 291
(2]
=}
< 1o
289
270
< 265 Is
x
3
S 260
= 14
[0]
T 255
£ 12
= 250
°
T 1o
245
287
3 12
3
L 285
£
2 11
[$]
9 =
5 283
€
[e] i
3 e °
281

1990 2010 2030 2050 2070 1990 2010 2030 2050 2070

Figure 6. (a—h) (left) Time series and (right) anomalies relative to the observational period of the CMIP3
models and ERA-40 for the eight temperature indices. The five best models for each index are given as
dark blue lines, while the black line represents the MMM. An 11 year average is applied to the time series.
The mean value and +1 standard deviation in the year 2079 are shown in light blue (dark blue) for all

CMIP3 models (five best models).

p = 0.4 between Temp ALL and Temp corr. This indicates
that when the performances of the individual models on a
few chosen regional features are summarized, the results of a
ranking based on the rmse or correlation on a global scale
can be approached.

[28] Finally, the errors obtained for all precipitation and
temperature indices are summed to obtain the line “indices” on
Figure 4c, which can be compared with the rmse/corr ranking
and the broad-brush metric ranking RK08 (Figure 4c). In
this final index ranking, the MMM ranks fifth and it is
reasonable to assume that including more regional features

and/or more variables will contribute to improve the rank of
the MMM, which will eventually rank first. It is obvious that
the MMM ranks first for the rmse/cor ranking since it was
already the case for the rmse and corr ranking of each
individual variable. The MMM also ranks first in the RK08
ranking for the same reason. By definition the error of the
MMM at each grid point cannot be larger than the mean
error of the models and consequently, the errors of the
MMM are the smallest when averaged globally. Neverthe-
less, the three ways of ranking presented here share simi-
larities. The Spearman’s rank correlations are significant
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between the three rows in Figure 4c: p = 0.44 between
“indices” and “RKO08,” p = 0.61 between “indices” and
“rmse/corr” and p = 0.78 between “RKO08” and “rmse/corr.”
This shows that when summarizing the errors at simulating
the mean of several feature-based metrics for different
variables, the performance of the individual models is partly
the same as when evaluating the models with measures of
the global spatial distribution and including more (e.g.,
RKOS8 ranking) or less (e.g., rmse/corr ranking) climate
variables.

[29] To summarize, an evaluation of the models using
global statistical measures like the RK08 ranking does not
capture the average performance of the MMM at simulating
the mean precipitation amounts in a given region. Such
evaluation techniques rather reflect the fact that the MMM
has the smallest errors as soon as the domain size exceeds
several grid points because it cannot have per definition the
maximal error on a grid point (in contrary to the individual
models). When the ranks obtained for the eight precipitation
and temperature indices are summed up and ranked again, a
similar result is seen: the MMM does not have to com-
pensate for poor rankings and the performance of the MMM
becomes gradually better the more regions and variables are
summed up. The information that single models are better
than the MMM at simulating regional mean precipitation
amounts for a given season can be relevant for impact
studies but is hidden in evaluations using a global broad-
brush approach. In addition, the results obtained for tem-
perature suggests that the worse performance of the MMM
for the feature-based metrics compared to global summary
statistics is not a particularity of precipitation but is likely to
hold for most variables. The interpretation of the MMM is
further discussed at the end of section 6.

6. Future Projections

6.1. Method

[30] Once the models performing best for a given regional
feature are identified, the question arises whether these
models will still be the best performing ones in the future.
The assumption that the models simulating the present cli-
mate accurately will also simulate well the future climate is
often made [e.g., Tebaldi et al., 2004]. While it is impos-
sible for obvious reasons to perform a model evaluation
with feature-based metrics for the future to check if this
assumption is correct, investigating the convergence of the
models on future predictions can partly answer this ques-
tion. If a subset of models (chosen based on agreement with
observations) shows considerably smaller spread, then the
observations can be regarded as useful to distinguish
between models. This is equivalent to a correlation between
biases in the present-day simulation and the predicted
change. The assumption is that such correlation is not just an
artifact of all models making similar assumptions, but rather
that it reflects an underlying physical process or feedback
that influences both the base state of a model as well as the
simulated change. In practice such correlations unfortu-
nately are relatively low in many cases [Knutti et al., 2010b;
Whetton et al., 2007], probably partly as a consequence of
the observations being used already in the model develop-
ment process.
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[31] The time evolution of the absolute values and the
anomalies of the eight precipitation and temperature indices
for the 100 year period 1980-2079 is shown in Figures 5
and 6 using an 11 year average. For the precipitation indi-
ces, the time series of GPCP and CMAP for 1980-2004 are
also presented. Similarly, the index time series of ERA-40
are shown besides the modeled index time series of tem-
perature. In addition, for each variable and each index, the
five models performing best are identified and represented
by dark blue lines. The model spread by the end of 2079 for
all models and the five best models is represented by an
error bar at the right of each panel. The error bars represent
the mean value +1 standard deviation.

6.2. Results and Discussion

[32] Figure 5 shows the modeled absolute and anomaly
time series of each precipitation index from 1980-2079
along with the observed absolute and anomaly time series
from 1980-2004. The model spread is large for all indices.
For example, in case of the absolute values of the ASI, the
projections vary by a factor of 5, hence the difficulty to give
clear statements about future precipitation amounts in this
region. The reason for the average performance of the
MMM in the index ranking presented above becomes evi-
dent by looking at the time series. The MMM by definition
lies in the middle of the model spread, while the observation
data sets lie in most indices at one end of the model spread.
Many models have similar biases and averaging models
therefore does not reduce the biases, which explains why the
MMM cannot perform best. In addition, the individual
models capture better the natural variability of regional
precipitation patterns than the MMM. This is due to the fact
that by averaging all 24 CMIP3 models to construct the
MMM, natural variability is automatically removed.

[33] As already mentioned, regional trends over the rela-
tively short observational period (25 years) are often dom-
inated by natural variability which is why the evaluation is
only performed on the ability of the models to simulate the
index mean value. Still, it is central that climate models are
able to correctly simulate the trends. A source of concern in
the case of the HLI is the inability of most CMIP3 models to
reproduce the DJF precipitation decrease during the obser-
vational period. Further, the discrepancies between the two
observational data sets CMAP and GPCP are very large for
the HLI and STI. While for the rmse/corr ranking these
differences have only a marginal influence (not shown),
using CMAP as the reference data set for the feature-based
ranking described above will lead to different outcomes. In
certain regions it is therefore currently ambiguous to identify
the best models due partly to uncertainties in the observa-
tional data sets. The implication is that the difficulties in
defining model performance are not only a problem of
agreeing on a metric, but is seriously limited by observational
uncertainties. This underscores the need for continuous,
global and homogeneous observations at high resolution.

[34] Considering only the five best models for each index
narrows the range of predicted absolute values (dark blue
lines in Figure 5), as expected. However, if anomalies are
considered (see right-hand plots in Figures S5a—5h), the
model spread is only reduced for 3 indices (AFI, HLI and
STI; see error bars in Figure 5), it remains approximately the
same for the AUI and CAI and even increases for the AMI,
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ASI and MEI. The results of the temperature index time
series are shown on Figure 6. In contrast to precipitation, the
signal of temperature change dominates the natural vari-
ability and model agreement is larger. However, in terms of
anomalies, only a minority of indices (AMI and HLI) see a
reduction of model spread.

[35] The way the MMM was calculated in this study can
be referred to as an “equal weighting” because each model
has one “vote.” A more sophisticated approach consists in
assigning more weight to the “good” models. Several
studies see some improvement in future projections when
using “optimum weighting” approaches [e.g., Perkins and
Pitman, 2009; Rdiscnen et al., 2010]. On the other hand,
Santer et al. [2009] find that an “optimum weighting” does
not affect the results of their detection and attribution study
for water vapor. For the feature-based metrics presented
here, applying an “optimum weighting” to the models
according to the ranking presented in section 6.1 will likely
lead to a reduction of the uncertainty for only a few indices
but these indices are different for precipitation (AFI, HLI
and STI) and temperature (AMI and HLI). However, the
problem is that an “optimum weighting” would keep the
model uncertainty constant or even increase it for the rest of
the indices. In addition, the differences in model spread
found between the five best models and all models are
highly time dependent: calculating the standard deviation by
the year 2059 or 2099 would have lead to slightly different
outcomes in terms of the indices showing a reduction of
spread but the conclusion would remain the same. A further
critical issue is the sampling of small subsets. The standard
deviation may also change by picking a random subset of
the models, even if the criteria for picking the models has no
relevance at all. For 5 out of 24 models, there is a proba-
bility of about 5% for the spread (standard deviation) to
increase or decrease by 50% or more in a random subset. In
other words, at least a 50% change in the spread can be
considered significant and very unlikely to arise by chance.
Only the AFI for precipitation and the HLI for temperature
show such large changes. In most indices the change in the
spread after selecting the subset of models is well within
what one would expect from randomly picking a subset. The
results presented here are in agreement with Weigel et al.
[2010], who argued that even if for some cases the “opti-
mum weighting” outperforms the “equal weighting,” the
risk that the former is worse than the latter is large. In cases
where there is currently no agreement on which skill mea-
sure to use in order to identify the best models, it is indeed
more transparent to weight the models equally. However,
Weigel et al. [2010] also showed that not considering those
models known for lacking key mechanisms needed to pro-
vide meaningful projections might be justified in some
cases.

[36] Further, Knutti et al. [2010b] showed that means and
trends are generally not well correlated. In the case of the
precipitation indices, a significant Pearson -correlation
coefficient between index mean (1980-2004) and trend
(2020-2079) is only found for the STI (p = —0.43), an index
for which the model uncertainty is reduced when consider-
ing only the five best models. For the temperature indices, a
significant correlation is found for the ASI (p = 0.43) and
the CAI (p = 0.48), which are indices that do not experience
reduction of model spread when selecting only the five best
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models. However, given that these correlations are low and
that there is no obvious physical explanation for them, they
should not be overinterpreted. Rather, the fact that signifi-
cant correlations between means and trends for an index do
not always correspond to those indices with a reduction
of model spread when considering the five best models
indicates that feature-based metrics are not more useful to
reduce the uncertainty in terms of anomalies than other
metrics. Nevertheless, many end users are interested in
absolute precipitation amounts and in this case, feature-
based metrics are a simple way to identify the models that
have some skill in a region but also to identify those who
have obviously no skill.

[37] Finally, it should be noted that the interpretation of
the MMM has been the subject of some debate. In particular,
different interpretations of model independence, model
robustness and of the ensemble of models itself are possible
and lead to different interpretations of future model uncer-
tainty [Pirtle et al., 2010; Knutti et al., 2010b, 2010a; Annan
and Hargreaves, 2010]. On the one hand, climate models
can be considered as “random samples from a distribution of
possible models centered around the true climate” [Jun et al.,
2008]. Consequently, when averaging all models to construct
the MMM, the errors are expected to decrease and the MMM
to approach the truth [Tebaldi et al., 2004]. The statistically
indistinguishable ensemble paradigm is an alternative way to
interpret ensembles, where the truth is a sample from the
same distribution as each model of the ensemble [e.g.,
Tebaldi and Sanso, 2009]. Annan and Hargreaves [2010]
compared both paradigms and find that the CMIP3 ensem-
ble generally provides a good sample under the statistically
indistinguishable paradigm. Assessing the statistical nature
of the CMIP3 ensemble is beyond the scope of this study
however, results from section 3 as well as in the case of the
eight feature-based metrics for precipitation, it seems that
the ensemble of models is not centered around the truth but
appears biased. Therefore, the MMM is not closer than any
other model to the observations, which seem to be statisti-
cally indistinguishable from the ensemble members. For
temperature, the CMIP3 ensemble also appears biased but to
a smaller extent than for precipitation. Nevertheless, there
is a need for further studies focusing on how to interpret
results from multiple models.

7. Conclusion

[38] The motivation for ranking the models is to specify
which one(s) can provide the most reliable projections. Until
now, model simulations have often been evaluated with
statistical measures and on large spatial scales, where the
MMM was found to perform best. As an alternative evalu-
ation method, we provide eight feature-based performance
metrics for precipitation and temperature. Feature-based
metrics are designed to capture a robust signal of change in a
particular variable that can be explained physically. As a
first step, the causes behind the large projection uncertainty
for precipitation are investigated. In large regions of the
world, differences between the models contribute more to
the total spread in projections than internal variability.
However, agreement in the sign of trend among several runs
of the same model is only slightly larger than among dif-
ferent models, indicating that even if differences between
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models are reduced, internal variability will still cause a
large lack of agreement in precipitation projections.

[39] For the regional feature-based metrics, the models
performing best are different for each region and variable,
and the choice of the observational data set is important in
the case of precipitation. Averaging the models is more
effective on aggregated metrics than on small scales and
features. This is illustrated by the fact that when summa-
rizing the performances of the models for all indices and
both variables, the MMM ranks better than for each index
individually. When the performances for the feature-based
metrics are summarized, they correlate with the ranking
obtained with statistical measures of errors and with the
global field-based measures of Reichler and Kim [2008].
This is agreement with earlier studies [Boer, 1993; Gleckler
et al., 2008; Pincus et al., 2008] who find that the MMM
outperforms any individual model if enough metrics or grid
points are evaluated and aggregated. We also tested a further
way of ranking the models based on their ability to simulate
the spatial correlation between the mean precipitation and
temperature pattern in the index regions (not shown). It was
found that the performance of the MMM for this regional
correlation ranking is between its performance in the index
ranking and the corr ranking for both precipitation and
temperature. The MMM ranked first in ~35% of the cases,
which is better than for the index ranking where it ranks
average, but worse than for the corr ranking where it clearly
ranks first. These findings confirm our hypothesis that the
more grid cells, metrics or variables are aggregated, the
better the performance of the MMM becomes.

[40] In a second part, the convergence of the projections
of the best performing models for each index is investigated.
On one hand and in particular for precipitation, the projec-
tions of the five best models in terms of absolute values
appear more realistic than the ones performing below
average since for most indices, the observations lie at one
end of the model spread. However, when considering the
anomalies, it is found that regardless of the variable, the
majority of the indices see no reduction or even an increase
in future uncertainty. These results suggest that on a regional
scale, weighting the models might improve the projections
only in few cases. In the absence of a process based argu-
ment, given the small number of existing models and the
chosen subsets of 5 models, only a reduction in model
spread by more than 50% is an indication of a successful
constraint (see section 6.2). Model weighting should there-
fore be performed carefully. Our results tend to support
previous findings showing that a good performance in the
present does not guarantee skill in the future [Jun et al.,
2008; Reifen and Toumi, 2009]. On the other hand, there
are a few cases where past and future performance in models
are clearly related and physically well understood, for
example, past greenhouse gas attributable warming scaling
linearly with future transient greenhouse gas warming [A/len
and Ingram, 2002; Stott et al., 2006]. Such relationships are
routinely used and widely accepted to constrain or calibrate
projections with simple and intermediate complexity models
[e.g., Knutti et al., 2002; Forest et al., 2002; Meinshausen
et al., 2009]. Another prominent example is the Arctic,
where models underestimating past sea ice decline also
show much weaker sea ice loss in the future [Boe et al.,
2009b] and where performance in simulating the current
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Arctic climate is related to projected future response in that
region [Boe et al., 2009a; Mahistein and Knutti, 2011]. In
such obvious cases we argue that observed evidence should
not be ignored when synthesizing models.

[41] Evaluating the models is a central task in climate
science and the reason why there is currently no agreement
on a standard way to perform an evaluation reflects the fact
that on the one hand, the connection between present-day
and future performance is poorly understood and on the
other hand, it also depends on the purpose. While hydrol-
ogists need assessments of the best performing models on a
regional scale and primarily for precipitation and tempera-
ture, some model developers are more interested in sum-
marizing the performance of climate models for many
variables and over all regions of the globe as for example in
work by Reichler and Kim [2008]. For specific applications
and predictions, defining metrics not only based on mean
biases but also on regional or temporal characteristics (e.g.,
distributions of daily rainfall) or on physical processes [e.g.,
Eyring et al., 2005] may be more promising. It is evident
that the index ranking presented here is partly subjective due
to the choice of the eight indices. The indices should
therefore be regarded as examples and depending on the
purpose, other sets of indices can be defined. We also point
out that the results are at most valid for precipitation and
temperature and do not allow for any evaluations of the
model performance on other variables or on a global scale.
Further considerations of alternative ways of evaluating
climate models in order to make best use of their predictions
are encouraged.
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