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[1] Climate change projections are often based on simulations
from multiple global climate models and are presented as
maps with some form of stippling or measure of robustness
to indicate where different models agree on the projected
anthropogenically forced changes. The criteria used to
determine model agreement, however, often ignore the
presence of natural internal variability. We demonstrate that
this leads to misleading presentations of the degree of
model consensus on the sign and magnitude of the change
if the ratio of the signal from the externally forced change
to internal variability is low. We present a simple alternative
method of depicting multimodel projections which clearly
separates lack of climate change signal from lack of model
agreement by assessing the degree of consensus on the
significance of the change as well as the sign of the change.
Our results demonstrate that the common interpretation of
lack of model agreement in precipitation projections is
largely an artifact of the large noise from climate variability
masking the signal, an issue exacerbated by performing
analyses at the grid point scale. We argue that separating
more clearly the case of lack of agreement from the case of
lack of signal will add valuable information for stake-holders’
decision making, since adaptation measures required in the
two cases are potentially very different. Citation: Tebaldi, C.,
J. M. Arblaster, and R. Knutti (2011), Mapping model agreement
on future climate projections, Geophys. Res. Lett., 38, 123701,
doi:10.1029/2011GL049863.

1. Introduction

[2] Different global climate models produce different out-
comes for future climate change even under the same future
pathway of greenhouse gas concentrations. Methods are
being developed that try to synthesize different projections in
the now paradigmatic multimodel approach [Knutti et al.,
2010; Meehl et al., 2007a; Smith et al., 2009; Tebaldi and
Knutti, 2007; Tebaldi et al., 2006], but in many cases only
simple criteria are used to quantify and display agreement of
the projected anthropogenic changes, e.g. the ratio between
the spread across models (measured as one or two standard
deviations) compared to the multimodel mean response
[Deser et al., 2011; Meehl et al., 2007b, Figure 10.9], or the
number of models agreeing on the sign of change, adopted in
the Intergovernmental Panel on Climate Change’s [2007]
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Figure SPM.7 for precipitation (SPM.7 from now on). The
idea is that if multiple models, based on different but plau-
sible assumptions, simplifications and parameterizations,
agree on a result, we have higher confidence than if the result
is based on a single model, or if models disagree on the result.
A more in-depth discussion of this point is given by Rdisdnen
[2007] and Schaller et al. [2011].

[3] As pointed out by recent studies [Deser et al., 2011,
Hawkins and Sutton, 2009, 2011], a major source of
uncertainty besides model spread is internal natural vari-
ability of the system. This becomes increasingly relevant as
attention is focused on short term projections and predic-
tions and decadal predictability experiments are performed
[Meehl et al., 2009], and as interest is focused on regional
details of future changes. At these shorter timescales and
smaller spatial scales the climate change signal decreases
relative to the internally generated noise of the climate sys-
tem [Mahlstein et al., 2011]. Temperature projections benefit
from a high signal-to-noise ratio even for small spatial scales
and short term horizons, while precipitation change has the
opposite characteristic. Attribution studies also confirm this
dichotomy. The signal of an externally forced temperature
change has already emerged from the noise generated by
natural variability in all continents [Stoff, 2003] while chan-
ges outside of natural variability in precipitation have been
detected only for a zonal mean pattern over the whole globe
[Zhang et al., 2007]. Internal variability dominates at the grid
point scale for precipitation projections over the next few
decades [Deser et al., 2011; Hawkins and Sutton, 2011], so
for short term projections and variables with low signal-to-
noise ratios, simple criteria for model agreement of the forced
change that do not take into account the effect of natural
variability are prone to misinterpretation when they equate
lack of model consensus with lack of information.

[4] Representations of future projections in temperature
and precipitation as global maps, of the type found in SPM.7
(see, e.g., Figure 1c) may lead to such misinterpretations of
climate change projections, and we propose a new method
addressing this limitation. Of particular concern are swaths
of white that cover large regions (where the model consen-
sus on the sign of the change is less than 66%) and the
sparseness of the stippling in SPM.7 (where the consensus is
less than 90%). The typical interpretation of the white areas
is that projections for precipitation are inconsistent between
different models [Anderson et al., 2009]. But as pointed out
recently, the lack of robust trends is partly attributable to a
low signal-to-noise ratio, rather than inconsistent model
responses [Schaller et al., 2011; Power et al., 2011]. There
is a fundamental difference between lack of signal (i.e., lack
of detection of a significant response to external forcing)
versus lack of agreement in the signal, i.e. between regions
where the change is not statistically significant and regions
where different models produce significant changes of
opposite sign (disagreement over the magnitude of change
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Figure 1. (left) Early (2020) and (right) late (2090) century projections of December to February (a and b) surface temper-
ature and (c and d) precipitation change from the CMIP3 models. Our new method (Figures 1b and 1d) is compared with the
method that produced the AR4 SPM figures (Figures la and Ic).

is arguably less troubling for such a summary representation,
but would add another dimension to the problem). Arguably,
decisions related to adaptation considering these two types
of climate projections would come to very different con-
clusions: in the former case (lack of signal), stake-holders
may use the information contained in the (observed) histo-
rical variability of precipitation, coupled with the usually
more robust temperature projections, to devise adaptation
strategies, whereas in the latter case (lack of agreement)
stake-holders are left worrying about a future that promises
significantly changed conditions, but in an uncertain direc-
tion, feeling paralyzed by the lack of actionable information
[Jones and Boer, 2005; Moser, 2011]. Simple tests of agree-
ment in sign, e.g., in SPM.7, confound the two issues: Simply
put, in the case of negligible change that is still within the
noise of the system, models have a good chance of not
agreeing on the sign of change but still agree on the negligible
nature of that change. This is very different from the case
where models produce contradicting predictions over the
direction of a significant change that the climate system will
experience in reaction to increased greenhouse gases.

[s] Here we propose a simple method of analysis and
graphical representation that will clearly delineate the dif-
ference between these cases. We use examples of both
temperature and precipitation since the two variables are
significantly different with regard to signal-to-noise ratios
and degree of model agreement over the sign, size and sig-
nificance of the forced change. The method should be
applicable to other variables as well, which may have char-
acteristics more similar to one end of the spectrum (e.g.
temperature) or the other (e.g. precipitation), as far as the
role of natural variability is concerned.

[6] Our goal in this paper is to describe a method that suc-
cinctly, comprehensively and transparently depicts the results
of multimodel projections in accordance with our discussion
of the shortcoming of SPM-style projection maps. We do not
address the reasons behind the models’ future behavior, nor
issues of model validation, biases and differential weighting
of the multimodel ensemble members. We are simply pro-
posing a presentation that we believe enhances interpretation
and understanding of future projections from multimodel
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ensembles, when low signal-to-noise or model disagree-
ment play a role, individually or in concert.

2. Method

[7] SPM.7 represented by colors the value of the multi-
model averages and by stippling the areas where at least
90% of the models agreed on the sign of the change. When
less than 66% of the models agreed in sign the map was left
white, to indicate lack of agreement and therefore lack of
any robust information about the direction of future change.

[8] Our method explicitly considers statistical significance
in the choice of coloring or not, and stippling or not. Dif-
ferently from SPM.7, therefore, we distinguish the case
where models do not agree in sign but are still within the
boundaries of natural variability - in which case we argue
that information is available, and we still use colors to rep-
resent the multimodel mean — from the case where models
do not agree and simulate a significant change — in which
case we argue that we truly have conflicting information,
originating from the different models different responses to
forcings — and we leave the corresponding areas white.
There will be areas where the emergence of the signal from
the noise will happen consistently across the multimodel
ensemble (a majority of models will agree on significance
and sign). For these areas we will use color to indicate the
multimodel mean and stippling to indicate agreement in the
significance and the sign.

[v9] The method thus uses the following steps, grid point
by grid point (note that our results will be dependent on the
resolution of model output, and on the level of regional
aggregation that is performed before analyzing the signifi-
cance of the changes): 1) Test for significant change in each
of the models individually with a t-test comparing the mean
of the reference and the future period, 2a) if less than X =
50% of the models show a significant change then show the
multimodel mean change in color, 2b) if more than 50% of
the models show significant change then test for agreement
in sign by the following criteria, 3a) if less than Y = 80% of
the significant models agree on the sign then show the grid
point as white, 3b) if more than 80% agree on the sign show
it in color with stippling. The X and Y percentages are of
course a subjective choice. They could be chosen differently
depending on the desired level of confidence. Also note that
consistency in the sign of the forced signal is considered
here, but other criteria could be devised to consider agree-
ment in magnitude. The conceptual idea would be similar in
all cases.

[10] One could take a more formal approach to the choice
of X and Y considering that we can regard the behavior of
each model (significant or not, agreeing in sign or not) as the
realization of a binary variable having — under the null
hypothesis — 50% chance of turning out 0 or 1. Under this
model, with p = 0.5, we can compute the expected number
of successes for N trials, N being the number of models
considered, which equals p-N, and the variance of the dis-
tribution of successes, equal to N-p-(1 — p). We can then
choose a range that covers 95% of the probability for the
variable “number of successes” under the hypothesis of
random and independent trials (leaving the issue of charac-
terizing model dependence for other discussions) and choose
X and Y accordingly, thus protecting ourselves from random
occurrences of disagreement. We are not, in this paper,
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especially focused on the values of X and Y. In particular,
we chose not to replicate the [IPCC choices of 66% and 90%
in order not to draw special attention to these quantities,
which coincide with what IPCC uses as boundaries for a
probabilistic statement to signify a likely (>66%) or very
likely (>90%) outcome [Mastrandrea et al., 2010]. We are
here considering a fraction of models from an ensemble of
opportunity and we want to explicitly separate our choices of
X and Y from more formal assessment of confidence or
likelihood, which would necessitate further considerations
(e.g., of model dependencies, sampling, model performance,
and common structural errors) than simple empirical fre-
quencies from a multimodel ensemble.

[11] Other more sophisticated methods to quantify internal
variability (e.g. using control runs or multiple ensemble
members for each model) are possible, but again our concept
is generic. The criteria used here are deliberately kept simple
and transparent, and only one transient simulation from each
model is required. The proposed measures do not consider
model dependence [Masson and Knutti, 2011a; Pirtle et al.,
2010]. The significance of the signal and model agreement
on it also depends on the spatial scale [Hawkins and Sutton,
2011; Masson and Knutti, 2011b], and model agreement has
been shown to be better if regions with similar base climate
and change are carefully chosen [Mahistein and Knutti,
2010].

3. Results

[12] The results of the original method used in SPM.7 and
the new method are shown in Figure 1 for short term and
long term projections and for both temperature and precipi-
tation. Results are shown for December to February for
illustration; results for June to August are given in the
auxiliary material.' 21 models from the CMIP3 archive
[Meehl et al., 2007a] are used.

[13] For temperature, changes soon are significant and
models agree on the sign (Figure la). The two methods
produce results that are almost identical (Figures 1a and 1b).
For precipitation, using the IPCC method and looking out to
2020 (Figure 1c), however, the map is mostly white, but in
fact models agree that the signal is just small and has not
emerged from noise (as our new method depicted in
Figure 1d clearly shows). For the new method both the
number of white grid points and those with stippling
increase with time, as expected as the signal emerges, but the
overall pattern of change is similar for both time periods.

[14] An interesting test is to apply the two methods to
an initial condition ensemble of a single model (in this
case 8 members from an initial condition ensemble with
CCSM3). Figure 2 shows that even in this case the [IPCC
method produces large white areas in a picture like SPM.7.
This makes no sense, as in this case model uncertainty is
absent altogether and, by construction, there must be no
inconsistency of model response among the different simu-
lations. The new method shows clearly that the early decades
have no significant signal. Towards the end of the century,
some areas start to show significant signals, but there are no
white areas indicating inconsistency since all members come
from the same model (Figure 2b, right).

'Auxiliary materials are available in the HTML. doi:10.1029/
2011GL049863.
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Figure 2. (left) Early (2020) and (right) late (2090) century projections of December to February precipitation change from
eight initial condition ensemble members of the NCAR CCSM3, for (a) the AR4 SPM and (b) our new method.

[15] In the methodology proposed in this paper we are
testing for significance within each model by using the
variance estimated from within each of the model runs. We
therefore want to test that our method is robust when using
another measure of natural variability which is often con-
sidered, i.e., the different realizations that are available from
an individual model’s ensemble members. Because only a
small subset of models have at least three ensemble mem-
bers available under a given emission scenario, we artifi-
cially construct three multimodel ensembles that sample the
internal variability of each model as follows. We use all the
models that performed runs under the three SRES scenarios
prescribed under CMIP3 (B1, A1B and A2), treating the
three individual scenario runs for each model as a surrogate
of an initial condition ensemble. In order to make the signal
of climate change comparable across these three “members”
and use them to only span a range of variations due to nat-
ural variability and model uncertainty (but not scenarios), we
select the 20yr period around the time when the multimodel
mean global average surface temperature under each sce-
nario reaches 1°C above the reference period. This pro-
cedure thus produces three ensembles including the same
14 models producing climate change of similar magnitude,
but made of runs whose individual behavior spans three
realizations of natural variability. We indeed find that our
new method, similarly to the SPM method, produces maps
that are very similar when comparing the three ensembles,
confirming that our method maintains the desired quality of
not being strongly dependent on the particular sampling
of natural variability (the specific run included for each
model when more than one run is available), at least for an
ensemble of the typical CMIP3 size (see Figures S3 and S4
in the auxiliary material).

4. Discussion

[16] We propose a succinct and intuitive way to display
changes and agreement among models in a multimodel
ensemble that clearly separates lack of signal from lack of

information due to model disagreement. We thus categorize
three levels of multimodel agreement: 1) the majority of
models agree that future changes will be statistically signif-
icant and of the same sign 2) the majority of models show
significant change but in opposite directions and 3) most of
the models show no significant change. The basic idea is that
testing for model agreement is only meaningful if the models
are producing significant changes, i.e., changes outside of
internal variability. Apart from this conceptual advance, a
few conclusions are worth highlighting. First, in contrast to
popular belief, model agreement of future precipitation
change is greater than currently thought. Only few places in
the world show significant changes of opposite sign in dif-
ferent models. Second, despite a clear anthropogenic large-
scale signal, projections of precipitation at the grid point
scale for the next few decades are not significant for most
regions. Arguing about model consistency of the sign of the
signal is misplaced in this context. Third, there are large
regions where we are quite confident that anthropogenically
forced changes are likely to be small in the next few decades,
information that is no doubt useful for adaptation. Obvi-
ously, the details of our analysis depend on the spatial res-
olution adopted, which we chose here as T42 (about 250 by
250 km in grid box size), the same resolution that was
adopted to process and display multimodel results in the last
IPCC report’s SPM.

[17] This paper focuses on a methodology that is as simple
and transparent as possible. We do not address issues of
dependency among models, model evaluation or weighting,
or more sophisticated approaches to characterizing signifi-
cant change at the grid point or the field level, neither do we
address explicitly the problem of multiple comparisons
when testing a field grid point by grid point (except to say
that an application of the False Discovery Ratio methodol-
ogy [Ventura et al., 2004] did not change our results in any
appreciable way). We hope that researchers can take this
generic approach and fill in the steps having to do with the
definition of significance and the definition of agreement in
the way that best suit their analysis’ foci and goals.
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