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Summary. Even after careful calibration, the output of deterministic models of environmental
systems usually still show systematic deviations from measured data. To analyse possible
causes of these discrepancies, we make selected model parameters time variable by treating
them as continuous time stochastic processes. This extends an approach that was proposed
earlier using discrete time stochastic processes. We present a Markov chain Monte Carlo
algorithm for Bayesian estimation of such parameters jointly with the other, constant, parameters
of the model. The algorithm consists of Gibbs sampling between constant and time varying
parameters by using a Metropolis—Hastings algorithm for each parameter type. For the time
varying parameter, we split the overall time period into consecutive intervals of random length,
over each of which we use a conditional Ornstein—Uhlenbeck process with fixed end points as the
proposal distribution in a Metropolis—Hastings algorithm. The hyperparameters of the stochastic
process are selected by using a cross-validation criterion which maximizes a pseudolikelihood
value, for which we have derived a computationally efficient estimator. We tested our algorithm
by using a simple climate model. The results show that the algorithm behaves well, is compu-
tationally tractable and improves the fit of the model to the data when applied to an additional
time-dependent forcing component. However, this additional forcing term is too large to be a
reasonable correction of estimated forcing and it alters the posterior distribution of the other,
time constant parameters to unrealistic values. This difficulty, and the impossibility of achieving a
good simulation when making other parameters time dependent, indicates a more fundamental,
structural deficit of the climate model. This is probably related to the poor resolution of the ocean
in the model. Our study demonstrates the technical feasibility of the smoothing technique but
also the need for a careful interpretation of the results.

Keywords: Climate modelling; Cross-validation; Smoothing; State space models; Stochastic
process

1. Introduction

Model structures are rarely detailed or sufficiently accurate to reproduce the behaviour of an
environmental system at a level of precision that is comparable with measurements. This means
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that the assumption of independent and identically distributed measurement errors as the only
source of discrepancy between deterministic model results and measured data is often invalid.
Systematic deviations of model output from data might result from (measurement) errors in
model input, deficiencies in model formulation and parameter values or disregard of non-deter-
ministic processes. Such apparently non-deterministic processes can result from true indetermin-
ism, or they might be the consequence of model aggregation and simplification. In any case, the
implausibility of the assumption of independent and identically distributed errors implies that
parameter uncertainty estimates or model extrapolations based on simple non-linear regression
techniques are often unreliable.

This problem has motivated approaches that introduce a model inadequacy, or bias, term
to model output, in addition to the usual measurement error term (Craig et al., 1996, 2001;
Kennedy and O’Hagan, 2001; Bayarri et al., 2007). In a Bayesian context, such a term is intended
to describe our knowledge of the effect of model deficiencies on model output. It is usually
formulated in a non-parametric form as a Gaussian process interpolating the (deterministic)
model deficit between observation points (Currin et al., 1992; O’Hagan, 1992; Oakley and
O’Hagan, 2002). This approach has the virtue of being universally applicable without any
detailed knowledge or assumptions about physical causes of the model deficiencies. It can also
lead to more reliable estimates of uncertainty of the model parameters. However, as this leads
only to a statistical description of bias during the calibration period, the lack of information on
underlying mechanisms makes it difficult to apply this concept for prediction.

In the present paper we follow a different, but related, approach. We identify which parame-
ters, when made time variable, would significantly improve the fit and what degree of variation
of the parameter is required to do so. This can lead to insight that can be directly used to improve
the model by either keeping this parameter stochastic to obtain better estimates of uncertainty
(if time variation of the parameter is physically justified and the magnitude of the error seems
reasonable), improving the deterministic part of the model through relationships with external
or internal influence factors gained from the identified parameter time series or, at least, uncov-
ering more fundamental model deficits. Technically this approach involves replacing a chosen
parameter by a dynamic stochastic process, the state of which is estimated jointly with the other
(time constant) parameters of the model.

This approach was proposed more than 30 years ago and was successfully applied using
discrete time stochastic processes to describe the time-dependent parameter (Beck and Young,
1976; Beck, 1983; Young, 2001; Young et al., 2001; Kristensen et al., 2004). In this paper, we

(a) extend the approach from discrete time to continuous time parameters and
(b) develop a numerical scheme for Bayesian inference that is applicable to non-linear models
without relying on linearization.

Because we concentrate on the application of the proposed technique to environmental systems,
we apply the stochastic approach to time-dependent model parameters and inputs only, rather
than to modelled state variables. This is because, in contrast with other approaches (Vrugt et
al., 2005), we want to avoid violation of conservation equations (Kuczera et al., 2006). We feel
that any apparent violations of conservation of mass, heat or momentum are due to imprecise
inputs, neglected or inappropriately formulated processes or measurement uncertainty, and not
due to true violations of fundamental laws. In our view, violations of fundamental laws should
therefore be avoided if possible.

We demonstrate our approach by application to a widely used simple global climate model
that was proposed by Wigley and Raper (1987, 1992). For the assessment reports of the Intergov-
ernmental Panel on Climate Change (IPCC) (1995, 2001) this model was used to represent more
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complex atmosphere—ocean general circulation models for probabilistic climate projections and
the exploration of future scenarios (see also Wigley and Raper (2001) and Meinshausen (2005)).
Moreover, it served to diagnose and analyse atmosphere—ocean general circulation model
simulations (Raper et al., 2001) to investigate geochemical cycles (Osborne and Wigley, 1994),
and it is a part of various integrated assessment models (Edmonds e? al., 1994; IMAGE-team,
2001).

The driver of the climate model, radiative forcing, must be reconstructed from the past. This
reconstruction usually proceeds in two steps. First a proxy (e.g. the number of sunspots) for a
specific component of radiative forcing (e.g. solar radiation) must be reconstructed. Second, a
link between the proxy and the effective contribution to radiative forcing must be established.
Both steps are affected by uncertainty. This uncertainty cannot simply be represented by an
additive or multiplicative constant additional to the historic reconstructions (Crowley, 2000;
Joos et al., 2001) but is expected to have a time-dependent structure. We therefore apply our
technique to the problem of estimating a time-dependent error term additional to the recon-
structed historic radiative forcing. By considering this uncertainty in model input, it is hoped
that the estimates of uncertainty of the other, constant, parameters of the climate model will
also be improved. Moreover, the estimated time series of forcing corrections can support the
identification of other model deficits, e.g. by showing that the forcing error cannot be the cause
of certain model-data discrepancies.

This paper is structured as follows. Section 2 describes the governing equations of the general
model and the time-dependent parameter. Section 3 describes the techniques to estimate
constant model parameters and the time-dependent parameter jointly. In Section 4 a cross-
validation criterion to constrain the hyperparameters of the time-dependent process is proposed
and an estimator described. Section 5 contains the application to the simple climate model.
Finally, in Section 6 conclusions are drawn with respect to our methodology and to the specific
application to the climate model.

2. Governing equations

2.1. Differential equation models
We consider an environmental system that is described by a state vector x whose time evolution
we want to understand. We assume that there is a physically based model for our system in the
form of a set of differential equations (usually derived from conservation laws)
dx()
dr

Here the vector v denotes unknown parameters and/or inputs to the system.

We assume that ourdata y=(y1, ..., yp) consist of noisy observations of some known function
n of the state vector at a finite number of discrete time points °° = (tfb, e, tgb). We call n{x()}
the model output. Because of deficiencies in the model, we expect not only random errors but also
a bias. As mentioned in Section 1, we try to correct for this bias by allowing a component of ) to
be time varying: ¢ = (¢, 8) with ¢ = ¢(-) : I - R. We then identify the size and shape of ¢(-) that is
required to remove the bias, if possible, and from this we try to learn about the nature of the bias.
For ease of presentation, we assume that ¢(¢) is a scalar; the multi-dimensional case is analogous,
although correlation in the parameters might have to be considered and identifiability problems
can occur, depending on the experimental design. The time constant parameter 6 is assumed to
be multi-dimensional. This means that instead of model (1) with fixed parameters we consider
the solution of

f{x@®, v}, x(0)=x9, t€[0,T]=:1I (1)
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d)(;it) = f{x(®, 91,0}, x(0)=x, tel )
In particular, x(-) depends deterministically on #, ¢(-) and 6. The value of x(¢) for a fixed ¢ is
influenced not only by ¢(¢), but also by the whole trajectory of ¢(-) on [0, 7] (and by the initial
values of x). In what follows x will be considered either as a function of 7 or as a function of
t and all model parameters ¢(-) and 6. It should be clear from the context which viewpoint is
adopted.

We assume that the bias of the model is absorbed in the time-dependent parameter, but we
still need to consider two kinds of randomness: observation errors, which are denoted by &;,
and random effects that are not represented in the system, which are denoted by v;. Hence the
measurements are given as

i =n[{t°, (), 0} +vi +&;. 3)
Assuming zero means and a joint Gaussian distribution for all random effects, we obtain
V() ~ Nn{x(°)}, R] )

In our treatment, the covariance matrix R will be estimated independently of the data y and
held fixed subsequently (see Section 5.2).

Our approach is Bayesian: we consider ¢(-) as a random process and 6 as a random vector
with a prior distribution. Our goal is to estimate the posterior probability densities of their
distributions, given the observations, y.

2.2. The prior for the time varying parameter
In our development, we shall take as the prior for the time-dependent parameter ¢(-) a Gaussian
process with constant mean value ¢ and covariance function

cov{(1), d(s) } = o exp(—7lt —s)). (5)

Hence o2 is the variance and 7:= 1 /7 is the characteristic correlation time of the process.
This process is a continuous time auto-regressive process: for any i >0, we can write

¢(t+h) = +exp(—y){p() — d} +en, (6)

where ¢; , has variance 02{1 —exp(—2vh)} and is uncorrelated with past values ¢(s), s <1.
Because of Gaussianity ¢ j is also independent of the past, and hence ¢(-) is Markovian. More-
over it can be shown to have continuous trajectories (see section 9.2 in Cramér and Leadbetter
(1967)).

In our Markov chain Monte Carlo algorithm to be discussed later, we must simulate ¢(-)
on an interval (s, u) given the values on the intervals [0, s] and [u, T]. This is greatly simplified
because the conditional distribution of ¢(-) on (s, u) given the values on [0, s] and [u, T] depends
only on the two values ¢(s) and ¢(u). In discrete time, this follows from general results on
graphical models, and it continues to hold in the limit if we approximate a continuous time
process by a discrete time process. Moreover, because the process is Gaussian, this conditional
distribution is again Gaussian, and we can compute the mean

_ =, exp{—y(t =)} —exp{-27y(u—n}]
E[$(0)19(), )] = d+ S a—

L Exp{=y (=D}l —exp{—2y(t—5)}]
1 —exp{—2v(u—s9}

{p(s) — ¢}

{p(u) — o} (7)

and the variance
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[1 —exp{—2y(— ) }][1 —exp{—27(u —1)}]
I —exp{~2y(u—s} '
(For t — s =u —t, for instance, the result is given as formula (1.6) in Elerian ef al. (2001).) In
particular, for given start and end values, conditional simulation of ¢(-) on a fine grid is straight-
forward: we can proceed sequentially in time, always using the last value that we generated and
the end value.
In the context of modelling systems by differential equations, it is important to note that ¢
can also be written as the solution of the following linear It6 stochastic differential equation:

do () = —7{p(t) — ¢} dt + /(27)o dw(r) )

(see for example Kloeden and Platen (1995), or take the limit 2 — 0 in equation (6)). The first
term on the right-hand side of equation (9) represents a drift of ¢(r) towards the mean ¢; the
second term describes the random fluctuations that are induced by the increments of a Brownian
motion w(z),1.e. white noise. In the literature, this process goes under the name of a mean reverting
Ornstein—Uhlenbeck process.

Equations (2) and (9) imply that (x(-), ¢(-)) together are the solution of a system of stochastic
differential equations. Since, in many subject areas, modelling by differential equations is the
basic paradigm, we believe that it is an advantage to formulate the model extension in the same
paradigm. If we want to use a more general prior for ¢(-), it is then natural to consider a more
general class of stochastic differential equations instead of Gaussian processes with other covari-
ance functions. For simulation with given start and end values, we can then use the algorithm
of Beskos et al. (2006).

var{p(®)|p(s), p(u)} = o ®)

3. Estimation techniques

3.1.  Markov chain Monte Carlo simulation

Let £ = (o, 7) denote the two-dimensional vector of hyperparameters of the covariance function
(5) for ¢(-). The dependence structure of our model can then be summarized by the following
directed acyclic graph where doubled edges indicate a deterministic relationship:

£ — ¢() = x{,90(),0} = n&x) — y
TT
0

We are interested in the conditional distribution of ¢(-), # and £ given all available observations
y. In particular, for estimating a value ¢(¢) for a given ¢, we want to take also observations at
times tf’b >t into account. In the state space model framework, this is called a ‘smoothing’
problem. Since this conditional distribution is not available in closed form, we use a Markov
chain Monte Carlo algorithm with some special adaptations to the present situation (Buser,
2003; Elerian et al., 2001).

The process ¢(+) is in principle an infinite dimensional object. Although the technical problems
that are associated with this can be solved, we are satisfied here with the distribution of ¢(-) on
a fine grid. Then we can assume that all random variables have densities (with respect to the
Lebesgue measure). This grid will usually be chosen to be much finer than the grid of observation
times. It may be convenient to choose a regular grid and to interpolate between grid points if
the numerical variable-step algorithm that is used to solve the differential equation (2) requires
intermediate values.

To draw a sample from p{¢(-),0, |y} with the Gibbs sampler, we would generate at the
(k + 1)th iteration the values
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(a) 64! according to p{0lo()*, &, y}dd = p{Blo(-)*, y}db o p(8) p{ylo(-)*, 6} do,
(b) &+ according to p{&lp(), 0%+, yhdé = p{€l¢()*}dE o« p(€) p{d(-)¥|€} dE and
(© ¢()**!according to p{p()|0F1, &K1, y}do () ox p{o()IEFFT} p{yld(), 1} do ().

Including the hyperparameters £ of the Ornstein—Uhlenbeck process in the estimation pro-
cedure as described above leads, however, to problems of convergence if the process ¢(-) is
considered on a fine grid. This phenomenon, which occurs for all diffusion models with unknown
innovation variance, has been analysed in detail by Roberts and Stramer (2001). The reason is
that, if we observe ¢(-) on a grid with step size T/m, then the innovation variance o /7 can be
estimated with an error of order O(m~'/?) because the innovations are independent and identi-
cally distributed by the Markov property. In other words, the supports of the process ¢(-) on a
fine grid are almost disjoint for two different values of the innovation variance o2 /7. Hence, if
we generate ¢ on a fine grid in step (c) above, then the change in the ratio o2/7 in the next step
(b) is small. To overcome this problem, we use a plug-in value for the hyperparameters 7 and o
based on the cross-validation criterion (Gelfand and Dey, 1994). This is discussed in detail in
Section 4.

In addition, depending on the prior, there is a danger that 7 converges to 0 and o to oo, leaving
complete freedom for ¢(-) and thus allowing n{x(#;)} to match the observations without error.
Since we want to avoid such behaviour, we would presumably need a strong prior for £. Determin-
ing the hyperparameters o and 7 by cross-validation instead of including them in the Bayesian
inference process avoids this problem (see Section 4 for more details).

In what follows, & is therefore considered to be fixed, and we iterate between steps (a) and
(c) above. In both steps, we use the Metropolis—Hastings algorithm. The update in step (a) is
done in a standard way with random-walk proposals and so its description is omitted here. The
updates in step (c) are more difficult. Our algorithm uses ideas of Buser (2003) and Elerian
et al. (2001), and we give more details next.

3.2. Updating ¢(-)
Updating ¢(-) on the whole interval / in a single step with the Metropolis—Hastings algorithm
is not practical. It seems impossible to find a proposal distribution that gives reasonable accep-
tance probabilities. We therefore partition 7 into smaller subintervals /;, j=1,..., N, such that
the end point of I; is the starting point of /;;| and we propose updates on one subinterval /;
while keeping the value of ¢(-) outside /; fixed. The subintervals are visited in sequential order
during one iteration, and the lengths of the subintervals are chosen randomly with equal average
lengths. In this way, the boundaries of the intervals change from one iteration to the next.

When updating ¢(-) on /; we use the prior distribution for our proposal. This means that we
simulate a trajectory (;5( ) on I; of the Ornstein—Uhlenbeck process conditional on qbk“(t“"‘”)
and qbk(tend) (see Section 2.2). We calculate the acceptance probability r (see below for more
details) and accept or reject according to the Metropolis—Hastings recipe.

In other words, the stages of the procedure are as follows: for j=1,..., N, do the following
processes.

(a) Draw (;5( ) on I; according to a conditional Ornstein—Uhlenbeck process with gb(tjta“)
Pkt (tStart) and qb(tend) oF (tend) For j=1, we only condition on the end value, and, if
j=N, we only condltlon on the start value.

(b) Compute the acceptance probability r according to formula (10) given below.

(c) On I}, set ¢**1(-)=g(-) with probability r and ¢**+!(-) = ¢*(-) with probability 1 —r.

This constitutes the third step in the recursion that was described in Section 3.1.
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It remains to discuss the computation of the acceptance probability r. For a function ¢ on I,
denote its restriction to the intervals I with s < j, s=j and s > j by ¢1, ¢2 and ¢3 respectively.
We thus propose a move from gbg(-) to ¢, (+) while keeping ¢1(-) = qSIfH (-)and ¢3(-) = ¢’§(-) fixed.
Then the ratio of the target densities is equal to the likelihood ratio

R O R TR (O s
PO, d5(), S5, 0+
multiplied by the ratio of the conditional priors
P{ 011 O, 5 ()}
PABAOIST 0,500}
Now, by construction, the second ratio is the inverse of the ratio of the proposal densities, and
thus it cancels when calculating the acceptance ratio. Hence we obtain

PO, 6a(), $5(), 0571}
R ORCIORZ{ON Sl
Since the likelihood p{y|¢(-), 6} has the form p(y|n[x{#(-),0}]), it means that for each sub-

interval I; we must solve the differential equation (2) on the interval [t;ta“, T] which is time
consuming in general.

(10)

r=min|1

4. Cross-validation

For a given choice of the hyperparameters £ = (o, 7) of the Ornstein—Uhlenbeck process, we
assume that we can simulate from the posterior, i.e. the conditional distribution of (¢(-),6)
given y and £. The problem is how to choose the hyperparameters £ without including them
in the updates of the Markov chain Monte Carlo algorithm. We use a cross-validation crite-
rion (Gelfand and Dey, 1994) which is similar to an empirical Bayes approach. Instead of the
marginal likelihood we maximize the so-called pseudolikelihood

)4
psl(€):= ; log{p(yily—-i, &)} (11

with respect to the hyperparameters £. Here, y_; is a notation for the set of all observations
except yi, 1.6 Y—i ={¥1, -, Yie1, Yit1> - > Vp}-

Calculating the predictive densities p(y;|y—;, &) in expression (11) in a naive way is compu-
tationally very expensive. The following lemma shows that we can estimate p(y;|y_;, &) for all i
from a sample of the full posterior density p{¢(~), 0y, & } To make the procedure feasible, we
maximize psl(§) only over a relatively rough grid of values of £.

To simplify the notation in the lemma, we ignore that ¢(-) is a function and we use the notation

Y=(¢,0).

Lemma 1.
1

pOily-i)= .
/p(yily—i,w)‘lp(wly)dw

12)

Proof. By the definition of the conditional densities
pOily-i)=p()/p(y-i),
pOily—i» ) =pOIY)/ p(y-ild).
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By the law of total probability

PO = / Py_il) p) dyp = / p(p(y“”

_ 7 du.
iy P dY

Using p(y|Y) p(¢) = p(]y) p(y), we obtain
1
—i)= _— dv.
p(y—i) p(y)/p(y”y_i’w) p@ly)dy

From this, lemma 1 follows.

High likelihood values can be achieved by the model matching the observations very closely.
Besides adjustments of the time constant parameters, this can be achieved by adjusting the
time course of the time-dependent parameter ¢. For this reason, higher likelihood values can
be achieved if the hyperparameters allow ¢ to vary quickly. This is why inclusion of the hyper-
parameters in the Bayesian inference process leads to a tendency for 7 to converge to 0 and o to
oo unless this is prevented by a strong prior. Because

p(yily—i)=/p(yily—i,w)p(w|y—i)d¢,

we expect to avoid this problem by determining these hyperparameters by cross-validation. For
any given i, hyperparameters that lead to a high flexibility of ¢ will allow for realizations of ¢
with a large value of p(y;|y—i, %) (note that ¢ is part of ¢»). However, as this expression is inte-
grated with respect to the density p(¢|y—;) which will also have increasing mass for realizations
of ¢ that lead to a poor fit of y;, continued increase of the flexibility of ¢ will finally reduce the
pseudolikelihood.

Lemma 1 allows us now to derive an estimator of the pseudolikelihood value from a Markov
chain sample. If we have a sample (¥*;k=1, ..., M) from the full posterior density p(z|y), we
can approximate p(y;|y_;) by the harmonic mean of the p(y;|y_;, ¥/¥)s. In our situation, p(y|1))
must be replaced by p[y|x{¢(-),0}]. From equation (4) this is a Gaussian density with mean
vector n{x(z°®) } and covariance matrix R. By standard results concerning normal distributions,
the conditional density p(y;|y—;) is then again Gaussian with variance 1/A;; and mean

D)}~ 5 X0 )]
j#i Dii
where A is the inverse of the covariance matrix: A= R~!. Hence, in our case, the Monte Carlo
estimate p(yi|y—i) of p(yily—;) is given by
1 Qm)!/2 M ~12 Aii k,ob Aij kobiap)’
s S0 e 5 () + 2 0 -aie ) |
(13)

Computing the right-hand side is straightforward since we need to invert R only once and we
shall have saved the values x* (t;-’b). Substituting this into equation (11), we obtain our estimator
of the pseudolikelihood:

o
psl:= 21 log{ p(yily—i)}- (14)

5. Application to a simple climate model

We apply the techniques described to a hemispherically averaged, upwelling diffusion, energy
balance model of global climate (Wigley and Raper, 1987, 1992). Similar climate models of
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reduced complexity are an accepted and indispensable part of the model hierarchy in climate
modelling (Intergovernmental Panel on Climate Change (2001), chapter 8). This is because more
complex general circulation models are computationally too expensive for probabilistically esti-
mating climate system properties and future projected global mean temperatures.

5.1. The climate model

The climate model consists of two land and two ocean boxes (representing the northern and
southern hemispheres). The two ocean boxes are each vertically divided into 40 layers. The two
top layers, which are assumed to represent the ocean mixed layers, absorb the energy of solar
radiation (Fig. 1). It is assumed that no energy is absorbed above land.

At timescales that are relevant to climate change, the atmosphere may be assumed to be in
equilibrium with the oceanic mixed layer. This leads to the following differential equation for
ATy, the difference in the temperature of the oceanic mixed layer from its equilibrium value for
preindustrial times:

dATy (D)
! dr

where Cyy is effective heat capacity. The three terms on the right-hand side represent the causes
forachangein temperature: A F is the variation in radiative forcing, i.e. the change (relative to the
equilibrium state) in incoming power per unit area due to direct and indirect radiation, Q is the
net heat flux into the deeper ocean and the third term is a sum of feedback mechanisms pulling
the temperature back to equilibrium (ATy =0). The proportionality constant 3 determines the
new equilibrium value of the temperature if the forcing is changed by a constant amount. This
can be seen by considering the case in which the carbon dioxide (CO;) concentrations in the
atmosphere are doubled. Then the forcing will increase by an amount A F = Fdouble the actual
value being Fdouble — 3 71Wm—2 (Myhre et al., 1998). If there are no other changes in the forcing,

Cm =AF(n— Q@0 — B ATo(1) )

o@%

diffusion
«—>
—
upwelling
downwelling

downwelling
upwelling
—
>
diffusion

\

\

Fig. 1. Schematic figure of the simple climate model (Wigley and Raper, 1987, 1992) that is used to exem-
plify the smoothing algorithm



688 L. Tomassini, P. Reichert, H. R. Kiinsch, C. Buser, R. Knutti and M. E. Borsuk

the atmosphere—ocean system will eventually reach a new equilibrium in which ATj is constant
and Q =0. Hence, from equation(15), we obtain that

0= Fdouble _ﬁ ATy ATy = FdOUbIC/,B.
This equilibrium temperature increase due to a doubling of CO;, concentrations is called
climate sensitivity and is denoted by S. Hence we have 4= Fdouble /g Climate sensitivity is the
most important uncertain quantity of the climate system (and climate models) when it comes
to future climate projections on timescales of 100 years or more. It determines the long-term
temperature response of the climate system to increased radiative forcing from rising levels of
CO3 in the atmosphere.

In our climate model, there is heat exchange between the ocean mixed layer and the land
and between the two boxes of the mixed layer. This exchange of heat is determined by constant
exchange rates. Moreover, heat is transported in the ocean by diffusion and by a simplified
representation of the global, temperature-dependent ocean circulation (thermohaline circula-
tion). The temperature of the ocean is therefore described by another differential equation:

dAT(t,z)  PAT(t,z) AT, 2)
=K —Ww .
ot 972 0z

Here z denotes the vertical depth co-ordinate of the ocean, K is the constant rate of diffusion
called vertical ocean diffusivity and w is the upwelling rate which is linear in ATjy. The diffusivity
K describes how fast heat is transported in the ocean by diffusion. The temperature of the
mixed layer ATy is the boundary condition at depth z =0, and the net flux Q of equation (15)
is proportional to the partial derivative dAT/dz at z=0. Finally ocean depth is discretized into
40 layers, with partial derivatives replaced by finite differences.

The outputs of the climate model that we relate to observations are the global mean surface
temperature AT and the heat content of the ocean down to 700 m depth, AH7°™  These
are weighted averages of temperatures of the land and the oceanic mixed layers and of the first
seven layers of the ocean respectively. For the complete set of model equations, we refer the
reader to Wigley and Raper (1987, 1992) or Tomassini (2007).

In summary, the climate model that is used in the present analysis consists of a set of coupled
differential equations that are integrated numerically by using a second-order explicit Euler
scheme with variable step size. It produces two time series of yearly values for global mean
surface temperature and heat content of the world ocean down to 700 m depth that will be
compared with observations. 500 years of simulated time (which correspond to one model run
in the present study) take about 4 s realtime on a personal computer.

(16)

5.2. The error covariance

The observations that we use consist of time series (yearly values) of global annual mean surface
temperature data (Jones and Moberg, 2003) from the years 1861 to 2003 and annual mean change
in world ocean heat content down to 700 m depth (Levitus et al., 2005) from the years 1955
to 2003. Both data sets are publicly available (see Jones and Moberg (2003) and Levitus et al.
(2005)). In addition to the values also a standard deviation is provided.

For the likelihood function, we need to specify the error covariance matrix R which reflects the
observational errors g; as well as the errors v; due to climate variability that are not included in
the dynamics of the simple energy balance climate model. We assume that there is no dependence
between these two types of errors so that R is the sum of the two respective covariance matrices.

The covariance matrix of the observational error is constructed on the basis of the standard
deviations of the yearly data that are provided by Jones and Moberg (2003) and Levitus et al.
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(2005) for the surface temperature data and the ocean heat content change data respectively.
These standard deviations vary from year to year with a decreasing trend over the time intervals
for which data are available. For the surface temperature data we assume independence of
observational errors from year to year. Owing to methodological difficulties of measuring ocean
heat content and changes in applied measurement techniques over time, it is unrealistic to
assume independence of the observational errors of ocean heat content. This is supported by the
following argument. On the basis of equation (3) and the independence between the two types
of errors we obtain

E[(yi+1 — y1)1= E[(@i1 — 1 + it — v)?1+ El(ei11 — €)%
> E[(ei41 — &)°]=var(ei1) — 2a;/{var(e; 1) var(e) } +var(e;)  (17)

where «; is the correlation coefficient between y; ;1 and y;. For the data set that was provided
by Levitus ez al. (2005), we obtain X(y; 1 — y;)? =204.5(x 10%2])? and ©{var(e; ;1) + var(e;) } =
437.4(x10%2J)? which are clearly in disagreement with independent errors. Since it is difficult to
obtain detailed information about the correlation structure, we assume an exponential decay

cov(e,-,ej):J{Var(si)var(sj)}a‘i_jl. (18)

We used a value of « of 0.6. With this value, X E[(g;41 — e:)?] is equal to 176.9(x 10221)2. It is
thus a conservative estimate of « as significantly smaller values would not be compatible with
the constraining equations whereas larger values are.

Short-term climate variability is the major source of randomness in the climate system that
is not represented by the simple energy balance climate model. We cannot estimate natural
variability from observed data alone because of the difficulty of separating natural variability
from the underlying trend, and because the data time series is relatively short. As is common
practice in climate change detection and attribution studies (compare for example Stott et al.
(2001)), we therefore consider a control run of a complex climate model, in our case the Hadley
Centre climate model HadCM3 (see Collins ez al. (2001) for a detailed discussion of the internal
variability of HadCM3), as a representation of climate variability. This control run contains
processes such as short-term weather fluctuations, the north Atlantic oscillation and El Nino
southern oscillation related variability that are not included in the simple climate model that we
are using.

The control run has a length of 900 years. It is based on constant radiative forcing and, being
the result of a simulation program, no observation error. For these reasons, it can directly be
used to analyse climate variability (terms v; in equation (3)). On the basis of the Akaike infor-
mation criterion, we identified univariate AR(3) models for both mean surface temperature
and ocean heat content. An analysis of the cross-correlations between the innovations of these
series indicated significant terms for lags —1, 0 and 1. We therefore identified a multivariate
auto-regressive model (which resulted again to be of order 3) and calculated the correlation
covariance matrix of this model.

Fig. 2 illustrates the auto- and cross-correlation structure of the final error model.

5.3. Radiative forcing and stochastic model term

A crucial input to our model is the radiative forcing A F in equation (15), which must be recon-
structed from the past (see Crowley (2000) and Joos et al. (2001)). This is done by decomposing
it into nine different components that are reconstructed individually: green-house gas forcing
(the combined effect of CO;, methane, nitrous oxide, sulphur hexafluoride and halocarbons),
stratospheric ozone forcing, tropospheric ozone forcing, direct aerosol forcing, indirect aerosol
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forcing, organic and black carbon forcing, stratospheric water forcing, volcanic forcing and
solar forcing.

In the case of the volcanic forcing, the historic reconstructions actually relate to the optical
depth of stratospheric volcanic aerosols (Ammann et al., 2003), and not directly to the forcing
that is caused by volcanic eruptions. The forcing is assumed to be a scalar multiple of the optical
depth of stratospheric volcanic aerosols. This scaling factor, however, is uncertain. We there-
fore include a scaling parameter sy for the volcanic forcing in the Bayesian estimation. The
parameter represents the relative deviation from the best estimate of Ammann ez al. (2003). The
standard deviation of the prior distribution is based on uncertainty estimates in Intergovern-
mental Panel on Climate Change (2001). Fig. 8(a) in Section 5.5.5 shows the total reconstructed
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radiative forcing A Frecon (+), 1.€. the sum of all forcing components (with sy set to 1). The sharp
negative peaks that can be seen in the forcing are due to volcanic eruptions.

Because there is considerable uncertainty in the reconstructed historic forcing (Intergovern-
mental Panel on Climate Change (2001), chapter 6) and, because this uncertainty can be expected
to have a time-dependent structure, we added a stochastic and time varying component ¢(-):

AF(t) = AFrecon (t) + ¢(1). (19)

Here, A Fiecon 1s the forcing reconstructed from the past as described above, and the additional
forcing ¢(-) is assumed to follow the Ornstein—Uhlenbeck process for time-dependent parame-
ters that was described in Section 2.2 with ¢ =0 and with the hyperparameters o and 7.

5.4.  Priors for constant parameters

To account for input uncertainty of volcanic forcing, we included a scaling factor of volcanic
forcing as a parameter to be estimated from the data. In other studies (e.g. Knutti et al. (2002)
and Forest et al. (2006)), similar factors were included for other forcing components as well.
As these other forcing components vary at similar timescales to our time-dependent additional
forcing component, we can omit these factors in the current study. In addition to the scaling
factor of volcanic forcing, we included five constant parameters to be estimated together with
the time varying component ¢(-). These parameters and their prior distributions are listed in
Table 1 and visualized as broken curves in Fig. 3. The prior distributions of all parameters are
assumed to be independent. For climate sensitivity S and vertical ocean diffusivity K (see Section
5.1) uniform priors over large ranges are used (see for example Knutti et al. (2002), Stainforth
et al. (2005) and Forest et al. (2006) for reasonable values of climate sensitivity, and Raper
et al. (2001) for a discussion of the vertical ocean diffusivity in the Wigley—Raper model). The
depth of the ocean mixed layer / is a quantity that can actually be measured very well locally,
but it varies over the globe between 40 m and 140 m. The global mean value that was used in
our model is therefore considered to be uncertain with a mean of 90 m and a standard deviation
of 10 m. The two parameters ATifl‘;rface and AH;?OHI are initial values for global mean surface
temperature and annual mean change in ocean heat content down to 700 m depth respectively.
These two parameters are of minor importance for our analysis since they are model dependent
and should not be assigned a direct physical interpretation.

5.5. Results and discussion
In all our analyses, the Markov chain Mante Carlo sample size was 60000. Every second point
was disregarded to save computer storage space and to facilitate post-processing. In addition,

Table 1. Parameters to be estimated and their
marginal prior distributions

Parameter Units Prior distribution
Svole log-normal(1.0,0.379)
S K uniform(1,10)

K m?a~!  uniform(100,10000)

h m normal(90,10%)
Arguface g normal(—0.35,0.252)
AHROM 1025 normal(~7.5,2.5%)
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the first sixth of the chain was disregarded to overcome burn-in effects. An iterative process of
improving the jump distribution of the Metropolis algorithm was run before finally calculating
the chains of full length. The Heidelberger and Welch stationarity and half-width diagnostics
(Heidelberger and Welch, 1983; Cowles and Carlin, 1996) as implemented in the R library boa
were run with both parameters, and the accuracy of posterior estimates and the confidence level
of the sample mean set to 0.1. All chains for which we show posterior marginals passed both
of these tests. However, a small fraction of the chains for which we calculated psl-values (the
small dots in Fig. 4) did not pass both tests.

5.5.1.  Results without time-dependent parameters
First, we performed an analysis without time-dependent parameters. As there is no model inter-
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of solutions that are discussed in more detail in the text

nal bias correction in this model, an additive bias correction to the output would be required.
As this is not done in most applications, as a reference case we applied Bayesian inference to
this model without explicitly considering model bias.

Fig. 3 shows the marginals of prior and posterior parameter distributions resulting for this
reference case. According to this analysis, all parameters with the exception of the depth of the
mixed ocean layer, /4, are identifiable. The scaling factor for the volcanic forcing component, syoic,
obviously requires a reduction from its default value of 1. However, the results that are shown
in Fig. 3 are not reliable, as a comparison of model results with observations shows a significant
bias. (By combining a frequentist likelihood function with Bayesian priors we can do frequentist
residual analyses at the maximum of the posterior.) This means that we must consider bias of
this simple model either by considering an additive bias term or by trying to compensate for the
bias by making one or more parameters time dependent. As input uncertainty is considerable,
we first try to improve the model by adding a time-dependent input correction as described by
the model equation (2) and further details given in Section 2. We shall then analyse whether this
represents a reasonable input error or whether it indicates structural deficiencies of the model.

5.5.2.  Choice of hyperparameters of stochastic forcing

Inclusion of the hyperparameters o and 7 of the Ornstein—Uhlenbeck process in the Bayesian
estimation process as described in Section 3 turned out to be feasible from a technical point
of view. However, unless the correlation time 7 was bounded away from 0 with an informative
prior, the posterior had the tendency to reduce 7 to gain more freedom in adjusting the solution
to the data. For this reason, we applied the cross-validation procedure that was described in
Section 4 to constrain the hyperparameters of stochastic forcing.



694 L. Tomassini, P. Reichert, H. R. Kiinsch, C. Buser, R. Knutti and M. E. Borsuk

Fig. 4 shows contour lines of the resulting pseudolikelihood surface calculated by using
equation (14). Fig. 4 clearly demonstrates that the cross-validation procedure is successful in
excluding small values of 7 at which the predictability becomes worse. However, there are no
constraints with respect to large values of 7. The results that are shown in Fig. 4 indicate that
the higher stiffness of input correction resulting from large values of 7 can be compensated by
increasing o as well. As we are interested in small input corrections, we choose the solution with
0=0.5Wm~2 and 7 = 100 a for further analysis but we shall use the solutions with ¢ = 1.0 Wm—2
and 7=200 a and with o = 1.5 Wm~2 and 7 = 500 a for comparative purposes. These three pairs
of values of ¢ and 7 are marked by bold points in Fig. 4.

5.5.3.  Model output

Figs 5 and 6 show the observations of mean surface temperature and ocean heat content respec-
tively, together with the posterior quantiles of the corresponding model output n{x(z) }. To assess
the differences between observations and model outputs, we also give predictive intervals for a
hypothetical independent observation at the same time point. In both Fig. 5 and Fig. 6 the results
are shown for simulations without time-dependent parameters (¢ =0) and for the three pairs
of hyperparameter values that are marked by big dots in Fig. 4. Without stochastic forcing, the
90% credible intervals for the model output appear too narrow and the model shows deficiencies
especially in the mean surface temperature of the 1940s and 1950s and in the ocean heat content
at the end of the 20th century. If a stochastic forcing is added, the 90% credible intervals are more
realistic and the model deficiencies that were mentioned above are mostly corrected. This is true
for any choice of values for o and 7 from among the three pairs identified in Fig. 4. For the surface
temperature, in particular, the model residuals (which are defined as the observations minus the
posterior median of the model output) are now much closer to having only a small correlation
structure as described in Section 5.2. However, ocean heat data still show a strong temporal
variation that is not compatible with our model assumptions. This decadal variability of the
observed ocean heat content is not reproduced even by the most comprehensive models (Gregory
et al., 2004). Either all models underestimate decadal variability in ocean temperature, or the
observations are biased. There is recent evidence supporting the latter assumption (Domingues
et al., 2008). A similar caveat applies to the surface temperature cooling in 1945 which is likely
to be an artefact of ship-measured sea surface temperatures (Thompson et al., 2008).

5.5.4.  Posterior distributions of constant parameters with stochastic forcing

Fig. 7 shows the posterior marginals of the two most interesting parameters, climate sensitivity
S and vertical ocean diffusivity K, without time-dependent parameter and with time-dependent
forcing correction for the combinations of hyperparameter values o and 7 marked by big dots
in Fig. 4. We would expect an increase in posterior uncertainty of these parameters when
introducing a time-dependent parameter because conditioning reduces the variance on average.
However, if the model with time constant parameters is misspecified, the opposite behaviour is
also possible. The expected widening of the posterior marginal by introducing the time-depen-
dent parameter is clearly visible for vertical ocean diffusivity K. There is a similar increase in
posterior uncertainty for all three choices of hyperparameter values. The most striking feature
shown in Fig. 7, however, is the strong dependence of the posterior of climate sensitivity on the
standard deviation of the time-dependent parameter 0. We see the expected widening of the
distribution for 0 =0.5Wm~2 and 7= 100 a but, as ¢ increases further, the posterior becomes
narrower and shifts to values that are smaller than what more complex climate models predict
(Knutti et al., 2002; Forest et al., 2002; Stainforth et al., 2005).



Estimating Stochastic Continuous Time Model Parameters

695

0 _| °
o
L ]
(
o D PO g M 240 2 XK V.
= e L Y o.. s (X )
] ~ ¢
@ | we s s
I
S
it T T T T
1800 1850 1900 1950 2000
time
(a)
X
'_
<

1800

-1.0

[
1800

AT [K]

2000

1900
time

(d)

Fig. 5. Observations and model output for global surface temperature for various choices of the hyper-

parameters of time-dependent forcing (

, 5%, 50% and 95% posterior quantiles for model output;

estimate of the 90% predictive interval for a hypothetical independent observation): (a) c =0; (b) c =0.5Wm~™
and 7 =100 a; (c) c =1Wm~2 and =200 a; (d) s =1.5Wm~2 and =500 a

3



696 L. Tomassini, P. Reichert, H. R. Kiinsch, C. Buser, R. Knutti and M. E. Borsuk

AH [10%2]

1800 1850 1900 1950 2000

AH [10%2J]

©
! T T T T T
1800 1850 1900 1950 2000
time
(b)
=
0 — ¥
g =5
(\é o N ey A
7 7] e
©_N_
! T T T T T
1800 1850 1900 1950 2000
time

AH [10%2)]

—\ —\
T T T T T

1800 1850 1900 1950 2000
time

(d)

Fig. 6. Observations and model output for ocean heat uptake down to 700 m depth for various choices

of the hyperparameters of time-dependent forcing ( , 5%, 50% and 95% posterior quantiles for model
output; M, estimate of the 90% predictive interval for a hypothetical independent observation): (a) o =0; (b)
o=05Wm=2and 7 =100 a; (c) c = 1TWm~2 and 7 =200 a; (d) o = 1.5Wm~2 and 7 =500 a



697

Estimating Stochastic Continuous Time Model Parameters

© 005 =+ pue ,_WMG L =2 (Y) ‘(p) '8 002 =+ pue ,_wm L =2 (B) ‘(9) ‘e 0L =+ pue ,_WMG0=2(}) (@) ‘0=2
(8) ‘() :+ pue o sisleWeIRdIadAy BY) 10} SBN|EBA SnoueA 10} AJIAISNYIP Uead0 [edIUaA (Y)—(8) pue § Alalisuss arew|o (p)—(e) jo uoinguisip Jousisod -2 "Bi4

) (6) 0] (e)

[B/zw] H [e/zw] ¥ [e/zw] X [e/ew] %
0008 000% 0 o 0008 000V 0 o 0008 000% 0 o 0008 000% 0 o
| | | | m | | | | m | | | | m | | | | m
¢ s NG s
o o o o
o o o o
o o o o
FS — -o . FS — FS —
O — o O — S —
| F e B | B | F e
o ,W o 3 o ,W o ,W
o o — o o
) =) - o - o
S S S S
® ® ® ®
o o o o
o o o o
< e < <
) ) ) Y
(p) (0) (a) (e)
M]'s M]'s Ml's Mls
g¢ G2 91 S0 g¢g G¢ 9L 90 g¢e G¢ 9L G0 g¢ G2 91 S0
| | | | | o | | | | | (=} | | | | | | o | | | | | | o
o o o o
o o o o
o — o o o
BE 53 EE BE
I~ o; ~ o I~ o I~ »
) ) ) N
o o o o



698 L. Tomassini, P. Reichert, H. R. Kiinsch, C. Buser, R. Knutti and M. E. Borsuk

The shift to smaller values of climate sensitivity with increasing standard deviation of the
time-dependent parameter could have been caused by the time-dependent parameter raising the
input for modelling the temperature increase during the last 40 years or by avoiding a too high
sensitivity to the sharp peaks of volcanic forcing. To analyse whether these effects are dominant
causes of this behaviour, we redid all analyses by either

(a) keeping additional forcing at zero during the last 40 years of simulation,
(b) setting the factor on volcanic forcing to zero or
(¢c) combining (a) and (b).

The results showed that keeping additional forcing at zero during the last 40 years reduced but
did not eliminate the shift and narrowing of the posterior for climate sensitivity for both cases
with and without including volcanic forcing. In contrast, excluding volcanic forcing by setting
the corresponding forcing factor to 0 did not have a large effect.

5.5.5. Estimated stochastic forcing

Fig. 8(a) shows the reconstructed forcing A Frecon (-) With sy, set to 1. The posterior quantiles
of the stochastic forcing term ¢(-) for 0 =0.5Wm™2 and 7 =100 a are shown in Fig. 8(b).
For comparative purposes, Fig. 8(c) shows the posterior medians of ¢ for all three pairs of
hyperparameters that are marked in Fig. 4 (c=0.5Wm~2, 7=100 a; 0 = .0 Wm—2, 7=200 a;
o=1.5Wm~2, 7=500a). Fig. 8 shows that the smaller flexibility of the solution with increasing
values of 7 can to some degree be compensated by larger values of 0. However, higher values
of ¢ also lead to higher trend estimates of the forcing over the last 40 years.

We believe that the amount of forcing correction that is shown in Fig. 8 is unrealistically large.
This indicates that we are correcting model structural errors by adjusting the input. This implies
that we would need to make other model parameters time dependent to analyse the cause of
the model deficiencies further. As heat storage at decadal timescales must be related to ocean
heat storage, it seems to be logical to make parameters time dependent that relate to ocean heat
uptake. For this reason, we next try to make vertical ocean diffusivity K time dependent.

5.5.6. Results for time-dependent vertical ocean diffusivity

The results with stochastic, time-dependent vertical ocean diffusivity K were not much different
from those with constant K (not shown). We conclude that the parameter K does not have
a sufficiently strong effect on the model output to correct for model deficiencies with regard
to the interdecadal variability of ocean heat content change. This is in agreement with results
from Knutti and Tomassini (2008) where the Bern2.5D climate model, an earth system model
of intermediate complexity, was used. The findings indicate that atmospheric parameters such
as climate sensitivity have a more decisive influence on change in ocean heat content than the
vertical ocean diffusivity.

From a physical point of view this is an interesting and important result of the present work:
with respect to the change in ocean heat content and, to a lesser degree, also for mean surface
temperature, the discrepancies between model and data cannot be explained either by a forcing
error or by a time-dependent effective vertical ocean diffusivity. This implies that the model
structure of this simple climate model has deficiencies that may not be easily corrected without
including more detail of ocean circulation. Two-dimensional dynamical models (e.g. Knutti
et al. (2002)) have some representation of the large-scale circulation, but still have deficiencies.
Three-dimensional models simulate ocean heat uptake much more realistically (Barnett et al.,
2001; Gregory et al., 2004) but are computationally too expensive for such a method.

Other discrepancies may arise from biases in observations (Domingues et al., 2008; Thompson
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of the additional forcing term ¢(t) for ¢ = 0.5 Wm? and 7= 100 aé and (c) posterior median of ¢(t) for the
three combinations of (o, 7) of (0.5Wm=2, 100 a) ( ), 1Wm™2,200a) (- — —) and (1.5Wm~2, 500 a)
(ERERREE ) that are marked in Fig. 4

et al., 2008). Also, the model obviously lacks internal climate variability. Although this is taken
into account by the covariance matrix R of our error model, the internal variability component
is estimated from a comprehensive model rather than observations, and may not be entirely
adequate, particularly on long timescales and in the ocean (Gregory et al., 2004). The use of a
more complicated model would, however, make the problem computationally intractable.

5.5.7. Discussion
Introducing additional stochastic forcing led to significantly reduced systematic deviations of
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model results from data, but making ocean diffusivity stochastic did not substantially improve
model performance. This demonstrates that poor parameterization of ocean diffusivity cannot
be the dominant model deficiency, whereas forcing errors could be one reason for observed
systematic deviations. However, the amount of forcing correction that is needed to improve
the model results is unrealistically large. This implies more severe model deficiencies, probably
related to large-scale ocean circulation.

The major problems of the application of our approach to the climate model are the sensitivity
of the marginal posterior of climate sensitivity to the variance of additional forcing (see Fig. 7)
and the increasing positive trend of additional forcing during the last 40 years with increasing
variance of additional forcing (see Fig. 8). These two effects are related to one another: increasing
additional forcing allows the model to reproduce observed temperature increase at the end of
the simulation period with smaller climate sensitivity. Further, as evidenced below, the model
reacts too quickly to forcing changes, a tendency that is increased by larger values of climate
sensitivity. Therefore, the algorithm keeps climate sensitivity small and ‘misuses’ the freedom
of random forcing to increase forcing at the end of the simulation period.

The high sensitivity of the model response to short-term forcing changes can best be illus-
trated by its response to volcanic forcing. Several negative peaks in Fig. 5 demonstrate that
the model reacts too strongly to the (negative) forcing peaks of volcano outbreaks. This occurs
despite the fact that the inference process reduced volcanic forcing by more than 50%. As a
further indication of this sensitivity, Fig. 9 shows scatter plots of 1/p(yi|y_i,¥*) for y; cor-
responding to surface temperature data. The three pairs of hyperparameter values that were
identified in Fig. 4 are considered. In Figs 9(a)-9(c), S is included in the Bayesian inference
process, whereas in Figs 9(d)-9(f) S was fixed at the value of 3 K. In addition, the reconstructed
forcing is shown. We can see that in all cases the model has difficulties in predicting some of the
data points which are either outliers (such as the year 1878 in the surface temperature data) or
correspond to years where strong troughs in the forcing occur due to volcanic eruptions. This
model deficiency is stronger for large values of o and also when we fix S at 3 K (note the different
scales in Figs 9(a)-9(c) and 9(d)-9(f)).

Hence it seems that for large values of climate sensitivity the model cannot predict the tem-
perature observations at the times of volcanic eruptions. This is because it shows a stronger
response to volcanic forcing than the data.

6. Conclusions and outlook

We present a Bayesian technique for estimating time-dependent parameters of dynamic models.
Results of this technique can be used for identifying and analysing model structure deficiencies
and input errors of deterministic, dynamic simulation models. This extends earlier work based
on discrete time parameters (Beck and Young, 1976; Beck, 1983; Young, 2001; Young et al.,
2001; Kristensen et al., 2004) and earlier approaches of using continuous time parameters (Brun,
2002; Buser, 2003).

The technique is implemented by using a carefully designed Markov chain Monte Carlo
algorithm as a technique to estimate continuous time stochastic parameters. The main idea
consists of splitting the time interval into subintervals which reduce the rejection rate in the
Metropolis—Hastings algorithm and accelerate convergence of the Markov chain (Buser, 2003).
A conditional Ornstein—Uhlenbeck process with fixed end points is used as a proposal distri-
bution for the time-dependent parameter on the different subintervals. The hyperparameters of
the Ornstein—Uhlenbeck process are selected by a cross-validation criterion. In principle it is
possible to include the hyperparameters in the estimation procedure, but this led to a tendency
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to overfit the data unless a strong prior avoids this problem. As a consequence the estimates for
the hyperparameters may become physically unrealistic.

We tested our algorithm by using a simple climate model. The algorithm was applied to
estimate an additional stochastic radiative forcing contribution and vertical ocean diffusivity.
Results show that the smoothing algorithm proposed converges well and can estimate the time-
dependent parameters and their uncertainty effectively. The technique is well suited to detect and
correct model deficiencies which can lead to an improved understanding of the physical context.
The cross-validation scheme could constrain the correlation time but did not lead to a unique
selection. Application of the additional forcing component led to a significant improvement of
the fit, whereas making vertical ocean diffusivity time dependent did not.

As the climate example shows, our technique of using time-dependent parameters must be
applied carefully. It adds many degrees of freedom, and it may be difficult to understand how
the model uses this freedom to improve the fit. In our example, we found that it can create an
unrealistically large, time-dependent correction to radiative forcing. In the current application,
we thus could not profit substantially from application of the technique but rather must con-
clude that the model has severe deficiencies that cannot be corrected by realistic time-dependent
variation of any of the parameters to which we applied the technique. Nevertheless, this is an
important insight gained through the analysis. The climate model application should thus be
interpreted as an idealized example to illustrate the method rather than an attempt to constrain
climate sensitivity. The simplicity of the model and the added freedom by the additional forcing
term lead to a distribution that is too narrow and biased towards values that are unrealistically
low, in particular when the additional forcing is allowed to take large values. The range of
climate sensitivities disagrees with ranges that were gained by using more comprehensive models
(e.g. Forest et al. (2002), Knutti et al. (2002) and Stainforth ez al. (2005)) and should therefore
not be interpreted as being realistic for the real climate system.

We expect that, in general, when used thoughtfully, the technique that is presented in this
paper can be a powerful tool for analysing and correcting model input errors and structural
deficiencies. It can effectively aid in estimating time-dependent stochastic parameters, detecting
model deficiencies, helping to improve the structure of the model and estimating uncertain-
ties of stochastic influence factors. There are many ways to refine this approach. We could use
more complicated stochastic process models or different hyperparameter values in different time
periods. Moreover, there are other possibilities for dealing with time varying parameters, for
instance maximum likelihood methods combined with spline-type regularizations. We believe,
however, that the particular approach that is taken is not as important as the attempt to identify
model deficiencies. Time varying parameters are a useful tool for this task.
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