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ABSTRACT

Multimodel combination is a pragmatic approach to estimating model uncertainties and to making climate

projections more reliable. The simplest way of constructing a multimodel is to give one vote to each model

(‘‘equal weighting’’), while more sophisticated approaches suggest applying model weights according to some

measure of performance (‘‘optimum weighting’’). In this study, a simple conceptual model of climate change

projections is introduced and applied to discuss the effects of model weighting in more generic terms. The

results confirm that equally weighted multimodels on average outperform the single models, and that pro-

jection errors can in principle be further reduced by optimum weighting. However, this not only requires

accurate knowledge of the single model skill, but the relative contributions of the joint model error and

unpredictable noise also need to be known to avoid biased weights. If weights are applied that do not ap-

propriately represent the true underlying uncertainties, weighted multimodels perform on average worse than

equally weighted ones, which is a scenario that is not unlikely, given that at present there is no consensus on

how skill-based weights can be obtained. Particularly when internal variability is large, more information may

be lost by inappropriate weighting than could potentially be gained by optimum weighting. These results

indicate that for many applications equal weighting may be the safer and more transparent way to combine

models. However, also within the presented framework eliminating models from an ensemble can be justified

if they are known to lack key mechanisms that are indispensable for meaningful climate projections.

1. Introduction

Given the reality of a changing climate, the demand

for reliable and accurate information on expected trends

in temperature, precipitation, and other variables is con-

tinuously growing. Stakeholders and decision makers in

politics, economics, and other societal entities ask for

exact numbers on the climate conditions to be expected

at specific locations by the middle or end of this century.

This demand is contrasted by the cascade of uncertainties

that are still inherent in any projection of future cli-

mate, ranging from uncertainties in future anthropogenic

emissions of greenhouse gases and aerosols (‘‘emission

uncertainties’’), to uncertainties in physical process un-

derstanding and model formulation [‘‘model uncertain-

ties;’’ e.g., Murphy et al. (2004); Stainforth et al. (2007)],

and to uncertainties arising from natural fluctuations

[‘‘initial condition uncertainty;’’ e.g., Lucas-Picher et al.

(2008)]. In practice, the quantification of emission un-

certainties is typically circumvented by explicitly con-

ditioning climate projections on a range of well-defined

emission scenarios (e.g., Nakicenovic and Swart 2000).

Initial condition uncertainty is often considered negli-

gible on longer time scales but can, in principle, be sam-

pled by ensemble approaches, as is commonly the case

in weather and seasonal forecasting (e.g., Buizza 1997;

Kalnay 2003). A pragmatic and well-accepted approach

to addressing model uncertainty is given by the concept

of multimodel combination (e.g., Tebaldi and Knutti

2007), which is the focus of this paper.

Corresponding author address: Andreas Weigel, MeteoSwiss,
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So far there is no consensus on what is the best method

of combining the output of several climate models. The

easiest approach to multimodel combination is to assign

one vote to each model (‘‘equal weighting’’). Other more

sophisticated approaches suggest that assigning differ-

ent weights to the individual models, with the weights

reflecting the respective skill levels of the models, or the

confidence we put into them. Proposed metrics as a basis

for model weights include the magnitude of observed

systematic model biases during the control period (Giorgi

and Mearns 2002, 2003; Tebaldi et al. 2005), observed

trends (Greene et al. 2006; Hawkins and Sutton 2009;

Boé et al. 2009), or composites of a larger number of

model performance diagnostics (Murphy et al. 2004).

Given that, in seasonal forecasting, performance-based

weighting schemes have been successfully implemented

and have been demonstrated to improve the average

prediction skill (e.g., Rajagopalan et al. 2002; Robertson

et al. 2004; Stephenson et al. 2005; Weigel et al. 2008b), it

may appear obvious that model weighting can also im-

prove the projections in a climate change context and

reduce the uncertainty range. However, the two projec-

tion contexts are not directly comparable. In seasonal

forecasting, usually 20–40 yr of hindcasts are available,

which mimic real forecasting situations and can thus

serve as a data basis for deriving optimum model weights.

Even though longer-term climate trends are not appro-

priately reproduced by seasonal predictions (Liniger

et al. 2007), cross-validated verification studies indicate

that the climate is nevertheless stationary enough for

the time scale considered. Within the context of climate

change projections, however, the time scale of the pre-

dictand is typically on the order of many decades, rather

than a couple of months. This strongly limits the number

of verification samples that could be used to directly

quantify how good a model is in reproducing the climate

response to changes in external forcing and, thus, to

deriving appropriate weights. This situation is aggra-

vated by the fact that existing observations have already

been used to calibrate the models. Even more prob-

lematic, however, is that we do not know if those models

that perform best during the control simulations of past

or present climate are those that will perform best in the

future. Parameterizations that work well now may be-

come inappropriate in a warmer climate regime. Physi-

cal processes, such as carbon cycle feedbacks, which are

small now, may become highly relevant as the climate

changes (e.g., Frame et al. 2007). Given these funda-

mental problems, it is not surprising that many studies

have found only a weak relation between present-day

model performance and future projections (Räisänen

2007; Whetton et al. 2007; Jun et al. 2008; Knutti et al.

2010; Scherrer 2010), and only a slight persistence of

model skill during the past century (Reifen and Toumi

2009). Finally, not even the question of which model

performs best during the control simulations can be

readily answered but, rather, depends strongly on the skill

metric, variable, and region considered (e.g., Gleckler

et al. 2008). In fact, given that all models have essentially

zero weight relative to the real world, Stainforth et al.

(2007) go a step further and claim that any attempts to

assign weights are, by principle, futile. Whatever one’s

personal stance on the issue of model weighting in

a climate change context is, it seems that at present there

is no consensus on how model weights should be ob-

tained, nor is it clear that appropriate weights can be ob-

tained at all with the data and methods at hand.

In this study, we want to shed light on the issue of

model weighting from a different perspective, namely

from the angle of the expected error of the final out-

come. Applying a simple conceptual framework, we at-

tempt to answer the following questions in generic terms:

1) How does simple (unweighted) multimodel combi-

nation improve the climate projections? 2) How can

the climate projections be further improved by appro-

priate weights, assuming we knew them? 3) What would

the consequences be, in terms of the projection error,

if weights were applied that were not representative of

true skill? Comparing the potential gains by optimum

weighting with the potential losses by ‘‘false’’ weighting,

we ultimately want to arrive at a conclusion as to whether

or not the application of model weights can be recom-

mended at all at the moment, given the aforementioned

uncertainties.

The paper is structured as follows. Section 2 intro-

duces the basis of our analysis, a conceptual framework

of climate projections. In section 3, this framework is

applied to analyze the expected errors of both optimally

and inappropriately weighted multimodels, taking the

skill of unweighted multimodels as a benchmark. The

impacts of joint model errors and internal variability are

estimated. The results are discussed in section 4, and

conclusions are provided in section 5.

2. The conceptual framework

a. Basic assumptions

Our study is based on a conceptual framework of cli-

mate change projections, similar to the concept applied

by Kharin and Zwiers (2003) and Weigel et al. (2009) for

seasonal forecasts. We consider a climate observable x,

for example, a 30-yr average of surface temperature

over a given region, and assume that x will change by Dx

over a specified time period (e.g., the coming 50 yr). We

decompose Dx, the predictand, into the sum of a po-

tentially predictable signal, Dm, and an unpredictable
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‘‘noise’’ term, nx: Dx 5 Dm 1 nx. Thereby, Dm can be

thought of as the expected response of the climate to a

prescribed change in the external forcing (i.e., the ex-

pectation of a hypothetical perfect model that is run

many times from different initial conditions), while nx

represents the remaining fluctuations. Now, assume an

imperfect climate model M is applied to obtain an esti-

mate of Dx. Let DyM be this estimate, that is, the climate

change signal predicted by M under a prescribed change

in external forcing. Assume that there is no scenario

uncertainty, that is, that M is subject to the same changes

in external forcing as reality. Formally, DyM can then be

decomposed into the sum of the predictable signal Dm,

a random noise term nM (often referred to as internal

variability), and a residual error term �M. Thus, we have

Dx 5 Dm 1 n
x

Dy
M

5 Dm 1 n
M

1 �
M

. (1)

Henceforth, �M will be referred to as the model error and

can be thought of as a conglomerate of (i) errors due to

uncertainties in the model parameters applied to de-

scribe unresolvable small-scale physical processes (‘‘para-

metric uncertainties’’), (ii) errors arising from the fact that

known processes are missing or inadequately approxi-

mated in the model formulation (‘‘structural uncertainty’’),

and (iii) errors due to our limited understanding of rel-

evant feedbacks and physical processes (‘‘process un-

certainties’’). A more detailed characterization of these

uncertainty terms has been provided by Knutti (2008),

among others.

b. Interpretation of the error terms and uncertainties

The quantification of the uncertainties of the error

terms nx, nM, and �M is a key challenge in the inter-

pretation of climate projections. The uncertainties of nx

and nM stem from the high sensitivity of the short-term

evolution of the climate system to small perturbations

in the initial state and can, in principle, be sampled by en-

semble (Stott et al. 2000) or filtering (Hawkins and Sutton

2009) approaches. For simplicity, we assume that both nx

and nM follow the same (not necessarily Gaussian) dis-

tribution with expectation 0 and standard deviation sn,

with the understanding that real climate models can re-

veal considerable differences in their internal variability

(Hawkins and Sutton 2009).

Conceptually much more difficult is the quantification

of the uncertainty range of the model error �M. Some

aspects of the parameter uncertainty may be quantifiable

by creating ensembles with varying settings of model

parameters (e.g., Allen and Ingram 2002; Murphy et al.

2004). In addition, some aspects of structural uncertainty

may at least in principle be quantifiable by systematic

experiments. However, given the enormous dimensionality

of the uncertainty space, such experiments can at best

provide only a first guess of the uncertainty range. Even

more problematic is the quantification of the impacts

due to limited physical process understanding, that is,

the ‘‘unknown unknowns’’ of the climate system.

Unfortunately, the uncertainty characteristics of �M
cannot be simply sampled in the sense of a robust veri-

fication. This is for two reasons: (i) the ‘‘sample size

problem,’’ that is, the fact that the long time scales in-

volved reduce our sample size of independent past ob-

servations, and (ii) the ‘‘out of sample problem,’’ that is,

the fact that any conclusion drawn on the basis of past

and present-day observations needs to be extrapolated

to so far unexperienced climate conditions. Any uncer-

tainty estimate of �M is therefore necessarily based on an

array of unprovable assumptions and thus is inherently

subjective—and volatile. The confidence we put into a

climate model reflects our current state of information

and belief, but may change as new information become

available, or as different experts are in charge of quan-

tifying the uncertainties (Webster 2003). In fact, in a

climate change context there is no such thing as ‘‘the’’

uncertainty (Rougier 2007), and consequently it is very

difficult to give a reproducible, unique, and objective

estimate of expected future model performance. On the

shorter time scales of weather and seasonal forecasting,

model errors exist equally, but their effects can be em-

pirically quantified by sampling the forecast error statis-

tics over a sufficiently large set of independent verification

data (e.g., Raftery et al. 2005; Doblas-Reyes et al. 2005;

Weigel et al. 2009). In this way, an objective estimate of

the forecast uncertainty and thus of model quality is pos-

sible; the confidence we put into the accuracy of a model

projection is backed up by past measurements of model

performance in comparable cases.

Thus, the central conceptual difference between the

interpretation of short-range forecasts of weeks and sea-

sons and long-range projections of climate change is in

their different definitions of ‘‘uncertainty.’’ In the former,

uncertainty is defined by long series of repeated and

reproducible hindcast experiments and thus follows the

relative frequentists’ or physical perception of uncer-

tainty, in the sense of a measurable quantity. In the lat-

ter, uncertainty is partially subjective and depends on

prior assumptions as well as expert opinion, thus fol-

lowing the Bayesian perception of uncertainty. It is for

exactly this reason that the concept of model weighting,

which requires a robust definition of model uncertainty,

is relatively straightforward in short-range forecasting

but so controversial on climate change time scales.

In the present study we want to analyze the conse-

quences of ‘‘correct’’ and ‘‘false’’ weights on the accuracy
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of climate projections. However, a weight can only be

called correct or false if the underlying uncertainties to be

represented by the weights are well defined and uniquely

determined. To circumvent this dilemma, we simply as-

sume that enough data were available, or, as Smith (2002)

and Stainforth et al. (2007) put it, that we had access to

many universes so that the uncertainty range of �M can be

fully sampled and defined in a relative frequentists’ sense;

that is, we assume that enough information was available

such that the relative frequentists’ and Bayesian in-

terpretations of model uncertainty converge. This un-

certainty, denoted by sM, is what we henceforth refer to

as the true model uncertainty. We do not know how, or

whether at all, the actual value of sM can be sampled in

practice, but we assume that sM exists in the sense of

a unique physical propensity as defined by Popper

(1959). While this assumption may appear disputable, it

is indispensable for a discussion on the effects of model

weighting. Without the existence of a uniquely deter-

mined model error uncertainty, the task of defining op-

timum weights and thus the concept of model weighting

in general would be ill-posed by principle.

Finally, we assume that (i) the noise and error terms

nx, nM, and �M are statistically independent from each

other and (ii) that not only nx and nM, but also �M, have

expectation 0. Both assumptions may be too simplifying.

The former assumption implies, among others, that the

internal variability of a climate model is not affected by

errors in model formulation. The latter assumption im-

plies that, after removing the effects of internal vari-

ability, the expected mean bias of a model during the

scenario period is the same as the observed mean bias

during the control period (otherwise a nonzero �M would

be expected). This assumption of ‘‘constant biases’’ has

recently been questioned (e.g., Christensen et al. 2008;

Buser et al. 2009). Nevertheless, probably for lack of

better alternatives, these assumptions have been applied

in most published climate projections (e.g., Solomon et al.

2007), and we will stick to them to keep the discussion as

simple and transparent as possible.

c. Definition of skill

As a simple deterministic metric to quantify the ex-

pected quality of a climate change projection obtained

from a climate model M, we apply the expected mean

squared error (MSE) between DyM and Dx, henceforth

denoted by SM:

S
M

5 h(Dy
M
� Dx)2i

5 h(n
M

1 �
M

1 n
x
)2i

5 2s2
n 1 s2

M. (2)

The brackets h. . .i thereby denote the expectation. Since

sn and sM are assumed to be uniquely determined, SM is

well defined.

3. The effects of model combination and weights

In this section, we apply the conceptual framework of

Eq. (1) to analyze how SM is affected by the weighted

and unweighted combinations of multiple model output.

To keep the discussion as transparent as possible, we will

restrict ourselves mainly to the combination of only two

models. A generalization of the conclusions to more

models will not be presented here, but is straightforward

by mathematical induction, since the combination of any

number of models can be decomposed into a sequence

of dual combinations. We start our analysis with the

simple and idealized case of fully independent model

errors and negligible internal variability sn 5 0 (section

3a), then we discuss the case when the model errors are

not independent (section 3b), and finally we analyze the

consequences to be expected if sn is nonnegligible

(section 3c).

a. Negligible noise, independent model errors

Assume that the unpredictable noise can be ignored

(i.e., nx 5 nM 5 0). Under these conditions one has Dm 5

Dx, implying that the true observable climate change

signal Dx is in principle fully predictable. Assume that

two climate models, M1 and M2, are applied and yield

climate change projections DyM1 and DyM2. Let �M1 and

�M2 be the corresponding projection errors of M1 and M2

due to model uncertainty. From Eq. (1) it follows that

Dy
M1

5 Dx 1 �
M1

Dy
M2

5 Dx 1 �
M2

. (3)

This situation is illustrated in Fig. 1. Under these as-

sumptions, the expected squared errors of DyM1 and DyM2

are given by S
M1

5 s2
M1 and S

M2
5 s2

M2.

Combining DyM1 and DyM2 with equal weights yields

a simple multimodel projection y
(2)
eq with

Dy(2)
eq 5 Dx 1

�
M1

1 �
M2

2
. (4)

The superscript ‘‘(2)’’ indicates that two models are

combined, and the subscript ‘‘eq’’ indicates that they are

combined with equal weight. Assuming independence of

�M1 and �M2, the expected MSE of this multimodel,S(2)
eq , is

S(2)
eq dh(Dy(2)

eq � Dx)2i5 s2
M1

1 1 r2

4

� �
, (5)
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with

r 5
s

M2

s
M1

. (6)

In the following, r will be referred to as the model error

ratio between M2 and M1. It quantifies the relative skill

difference between M1 and M2. If r 5 1, the errors of

both models have the same average magnitude, imply-

ing that they have equal skill. As r gets smaller, the ex-

pected error magnitude of M2 decreases with respect to

M1, implying that M2 has higher skill than M1.

Figure 2 shows, as a function of r, the effects of model

averaging with equal weights. Without a loss of gener-

ality, we only show and discuss r # 1 (i.e., sM2 # sM1).

For the moment, we shall ignore the gray lines. Figure 2

shows the expected MSEs SM1 (thin dotted–dashed line),

SM2 (thin dashed line), and S(2)
eq (heavy black line) in units

of SM1. It is easy to see that S(2)
eq , 0.5(SM1 1SM2) for

all r; that is, the expected MSE of the combined pro-

jection is always lower than the average of the single

model errors, an observation that has also been made

in the verification of seasonal multimodel forecasts (e.g.,

Hagedorn et al. 2005; Palmer et al. 2004; Weigel et al.

2008b). For r $
ffiffiffiffiffiffiffi
1/3
p

’ 0.58, that is, if sM1 is not too

different from sM2, the multimodel error S(2)
eq is even

lower than that of the better one of the two single models

alone. For r ,
ffiffiffiffiffiffiffi
1/3
p

, on the other hand, better skill would

be obtained if only M2 was considered rather than the

multimodel. Thus, the optimum way of combining the

available information is obviously a function of r.

We now derive optimum weights to be assigned to

M1 and M2 such that the expected multimodel MSE

becomes minimal for a given r. Consider again the two

climate projections DyM1 and DyM2, which are now com-

bined to a weighted average Dy(2)
w :

Dy(2)
w 5 w(Dy

M1
) 1 (1� w)(Dy

M2
)

5 Dx 1 w�
M1

1 (1� w)�
M2

, (7)

with w being the weight of M1, and (1 2 w) being the

weight of M2. The expected MSE of this weighted mul-

timodel, S(2)
w , is then given by

S(2)
w dh(Dy(2)

w � Dx)2i

5 s2
M1[w2 1 (1� w)2r2]. (8)

Minimizing S(2)
w on w yields as an optimum weight wopt:

w
opt

5
r2

1 1 r2
. (9)

Note that wopt only depends on the error ratio r, but not

on the absolute values of sM1 and sM2. As one would

expect, wopt approaches 0.5 as r gets close to 1. For very

large (very small) error ratios, on the other hand, wopt

approaches 1 (0), implying that all weight is put on M1

(M2). The values of wopt as a function of r have been

added to Fig. 2 on the upper abscissa. Applying wopt in

Eq. (8) yields an expression for the optimum expected

MSE S(2)
opt:

FIG. 1. The conceptual framework of climate change projections for the assumptions applied

in section 3a. Here, Dx is the true climate change signal to be observed in response to a pre-

scribed external forcing, and DyM1 and DyM2 are two climate change projections obtained from

climate models M1 and M2 in response to the same forcing. The deviation of DyM1 (DyM2) from

Dx is assumed to be exclusively due to a model error �M1 (�M2) with model error uncertainty

sM1 (sM2). The two model error terms are statistically independent from each other. The ratio

r 5 sM2/sM1 is referred to as the model error ratio.
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S(2)
opt 5 w2

opts
2
M1 1 (1� w

opt
)2

s2
M2

5 s2
M1

r2

1 1 r2

� �
. (10)

The curve of S(2)
opt as a function of r has been included

in Fig. 2 (solid gray line), showing that the optimally

weighed multimodel clearly outperforms SM1, SM2, and

S(2)
eq for all r. Particularly for small values of r, that is

when M1 and M2 are very different in terms of their

expected errors, model weighting can indeed strongly

improve the projection quality with respect to the bench-

mark of equal weighting. However, this requires accurate

knowledge of r, which in practice is very difficult if not

impossible to obtain (see discussion in section 4). What

then happens in terms of the expected MSE if the

models are combined with weights w, which may be

thought to be optimal, but which in fact do not reflect the

true model error ratio? That is, what happens if weights

are applied without knowing the true value of r? As-

suming that it is equally likely that by chance the opti-

mum weight, the worst possible weight, or any other

weight w 2 [0, 1] is picked, we introduce S(2)
rand as a

summary measure to quantify the expected MSE of the

multimodel for random weights:

S(2)
randd

ð1

0

S(2)
w dw 5

ð1

0

[w2s2
M1 1 (1� w)2

s2
M2] dw

5 s2
M1

1 1 r2

3

� �
. (11)

The curve for S(2)
rand has been added to Fig. 2 as a dashed

gray line. It can be seen and shown that S(2)
rand $ S(2)

eq for

all r. In other words, the application of weights that are

independent of r would on average yield larger errors

than if no weights had been applied at all. This conclu-

sion holds for any value of r.

So far, we have assumed that the model errors �M1 and

�M2 are independent of each other, and that the un-

predictable noise nM and nx can be ignored. Under these

assumptions, the combination of infinitely many models

would eventually cancel out all model errors and yield

a perfect climate projection. Indeed, if m models are

combined with equal weights, and if m / ‘, the ex-

pected multimodel projection Dy
(m)
eq approaches

FIG. 2. Expected squared errors of single and multimodels as a function of the model error

ratio r for the assumptions applied in section 3a and Fig. 1. Shown are the errors for single

model M1 (5SM1, thin dotted–dashed line), for single model M2 (5SM2, thin dashed line), for

the unweighted average of M1 and M2 (5S(2)
eq , heavy black line), and for the optimally weighted

average of M1 and M2 (5S(2)
opt, solid gray line). The dashed gray line is S(2)

rand, which is the

expected squared error if the two models are averaged with random weights. The errors are

plotted in units of SM1. The top abscissa shows the corresponding optimum weights wopt of

model M1 as obtained from Eq. (9).
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lim
m!‘

Dy(m)
eq 5 lim

m!‘
Dx 1

1

m
�
m

i51
�

M,i

 !
5 Dx, (12)

with �M,i being the model error of the ith model. Opti-

mally and randomly weighted multimodels can be shown

to approach the same limit. The only difference is that

the optimally weighted multimodel would converge more

quickly than the equally weighted one, while the ran-

domly weighted multimodel would converge more slowly.

However, this limit of full error cancellation is not con-

sistent with what has been observed in reality. For ex-

ample, Knutti et al. (2010) have shown that half of the

typical surface temperature biases of climate models

would remain, even if an infinite number of models of

the same quality were combined. The main reason is

probably that different models share similar structural

assumptions and in particular share the same unknown

unknowns in terms of our physical process understanding,

which can lead to correlated errors (e.g., Jun et al. 2008).

We are aware that the conclusion of Knutti et al. (2010)

refers to an analysis of model mean biases while our dis-

cussion focuses on climate projection errors. Nevertheless,

their finding illustrates how correlated model errors can

influence the effects of model averaging. We therefore

now extend our discussion to the situation of joint model

errors, that is, model errors which are ‘‘seen’’ by all models,

while still ignoring the effects of unpredictable noise.

b. The effect of joint model errors

Assume now that for each climate model M contrib-

uting to the multimodel, the model error �M can be

decomposed into a joint error contribution �j, which is

common to all models, and an independent residual er-

ror term �9M; that is, �M 5 �j 1 �9M. For the combination of

two models, M1 and M2, this implies that the predicted

climate change signals DyM1 and DyM2 of Eq. (3) and the

weighted multimodel projection Dy(2)
w of Eq. (7) become

Dy
M1

5 Dx 1 �
j
1 �9

M1

Dy
M2

5 Dx 1 �
j
1 �9

M2

Dy(2)
w 5 w(Dy

M1
) 1 (1� w)(Dy

M2
)

5 Dx 1 �
j
1 w�9

M1
1 (1� w)�9

M2
. (13)

This situation is illustrated in Fig. 3. Note that now the

combination of infinitely many models would not con-

verge at Dx as in Eq. (12), but rather at (Dx 1 �j), which

is more consistent with the observed behavior of real

multimodels. Let s9M1, s9M2 and sj be the underlying

uncertainties of �9M1, �9M2 and �j. Assuming mutual inde-

pendence of �9M1, �9M2 and �j, the expected single model

squared errors SM1 and SM2 are given by

S
M1

5 s2
j 1 s92M1

S
M2

5 s2
j 1 s92M2, (14)

and the expected MSE of the weighted multimodel of

Eq. (8) becomes

S(2)
w 5 s2

M1[ j2 1 w2(1� j2) 1 (1� w)2(r2 � j2)]

with: j 5
s

j

s
M1

, r 5
s

M2

s
M1

, j # r. (15)

FIG. 3. The conceptual framework for climate change projections for the assumptions applied

in section 3b. In contrast to Fig. 1, the deviation of the climate projection DyM1 (DyM2) from the

observation Dx is now thought to be decomposable into two components: (i) an error term �j
(uncertainty sj), which is jointly seen by both participating climate models M1 and M2, and

(ii) a residual error term �9M1 (respectively �9M2). The residual errors are statistically independent

from each other. The ratio j 5 sj/sM1 is referred to as the joint error fraction.
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Henceforth, j will be referred to as the joint error fraction.

This term measures the fraction of the root-mean-square

error of M1, which is equally seen by M2. Minimizing

Eq. (15) on w yields as an expression for a revised op-

timum weight

w
opt

5
r2 � j2

1 1 r2 � 2 j2
. (16)

Figure 4 shows these optimum weights wopt as a function

of r and j. Note that j # r always, since sj, the model

error uncertainty jointly seen by both M1 and M2, can-

not be larger than sM2. The contour lines show that, for

any r, the optimum weight wopt of M1 decreases as j

increases. For example, if the model errors �M1 and �M2

are fully independent ( j 5 0), an error ratio of r 5 0.6

would correspond to an optimum weight of approxi-

mately 0.26. However, wopt would drop to 0.19 if j 5 0.4,

that is if 40% of the root-mean-squared error of �M1

contributes to the root-mean-square error of �M2; and

wopt would be zero if j 5 r 5 0.6. In other words, as j

increases, more weight needs to be assigned to the better

one of the two models than if the model errors were fully

independent. The reason is that the improvement in

skill is only possible by minimizing the contributions of

the independent error components rather than the total

model errors. That is, the error ratio characterizing the

effective skill difference between M1 and M2 is no longer

given by (sM2/sM1), but rather by (s9M2/s9M1), which

grows as j is increased (for r # 1). In summary, when the

existence of joint model errors is neglected in the for-

mulation of the optimum model weights, then the re-

sulting estimates of wopt would be implicitly biased. Too

little weight would be assigned to the better one of the

two models, and too much weight to the poorer one.

How does all this then affect the expected MSEs of

the multimodel outcome? Figure 5 shows, in analogy to

Fig. 2, the expected squared errors SM1, SM2, S(2)
eq ,S(2)

opt,

and S(2)
rand for (a) j 5 0.2, (b) j 5 0.5, and (c) j 5 0.7. Here,

S(2)
rand is defined in analogy to Eq. (11). Additionally, Fig. 5

shows (as triangles) the expected MSEs of a weighted

multimodel with the weights being determined from Eq.

(9) (assuming independent model errors) rather than Eq.

(16). This will henceforth be referred to as ‘‘simplistic’’

weights, and the resulting MSE as S(2)
simp. By that, we want

to analyze what would happen if r was accurately known

and considered, but the existence of the joint model er-

rors was neglected when calculating wopt.

The following conclusions can be drawn from Fig. 5.

As j increases, the net skill improvement of the multi-

models with respect to the single models decreases, re-

gardless of how the multimodel is constructed. This is

plausible, since multimodels can only reduce the inde-

pendent error components, whose magnitude decreases

as j is increased. In relative terms, S(2)
eq ,S(2)

opt, and S(2)
rand

behave similarly as in section 3a; that is, when taking

FIG. 4. Optimum weights wopt for the case of dependent model errors and negligible noise as

obtained from Eq. (16). The contour lines show wopt as a function of r (model error ratio) and

j ( joint error fraction). Here, j 5 0 corresponds to the case of fully independent model errors.

Forbidden combinations of r and j are shaded in gray (by construction j # r needs to be satisfied).
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the skill of equally weighted multimodels as a bench-

mark, optimum weighting further reduces the expected

MSE, while random weighting significantly deteriorates

the error characteristics. Finally, note that the applica-

tion of ‘‘simplistic’’ weights derived from Eq. (9) rather

than Eq. (16) implies squared errors, which are larger

than S(2)
opt, but still lower than Seq. In fact, it is only for

values of j * 0.5 that S(2)
simp deviates significantly from

S(2)
opt. In other words, if one was hypothetically able to

determine the value of r accurately but ignored the

effects of joint errors, then the results would only be

moderately deteriorated with respect to the optimum

weights. In summary, correlated model errors have only

a minor impact on the results in section 3a concerning

the relative performance of weighted versus unweighted

multimodels; however, they have a major impact on the

absolute multimodel performance in comparison to the

single models.

In the last part of this section, we now consider the

additional effects arising from unpredictable noise. For

simplicity, we return to the assumption of independent

model errors; that is, j 5 0.

c. The effect of unpredictable noise

Under the presence of unpredictable noise, all terms

in Eqs. (1) and (2) must be considered in the formulation

of Dx, DyM, and SM. As described in section 2b, we as-

sume that the noise terms nx, nM1, and nM2 are inde-

pendent samples from a distribution with expectation

0 and standard deviation sn. The situation is illustrated

in Fig. 6. The weighted multimodel projection of Eq. (7)

then becomes

Dy
w

5 Dm 1 w(�
M1

1 n
M1

) 1 (1�w)(�
M2

1 n
M2

), (17)

with an expected squared error of

S(2)
w 5 w2(s2

M1 1 s2
n) 1 (1� w)2(s2

M2 1 s2
n) 1 s2

n

5 s2
M1[w2(1 1 r2 1 2R2)� 2w(r2 1 R2) 1 r2 1 2R2]

with R 5
s

n

s
M1

and r 5
s

M2

s
M1

. (18)

Here, R relates the magnitude of the noise to that of the

model error of M1 and will henceforth be referred to as

the relative noise ratio. The values of R . 1 imply that

the uncertainties due to noise exceed the model uncer-

tainty, while R 5 0 corresponds to the situation of neg-

ligible noise as considered above in sections 3a and 3b.

Minimizing Eq. (18) over w yields the following as a re-

vised expression for wopt:

w
opt

5
r2 1 R2

1 1 r2 1 2R2
. (19)

Figure 7 shows wopt as a function of r and R. The contour

lines reveal that, for any r, wopt increases toward 0.5

as R is increased. For instance, if noise is negligible (i.e.,

R 5 0), r 5 0.6 corresponds to wopt 5 0.26. However,

for R 5 0.5 one has wopt 5 0.33, while for R 5 1 one has

FIG. 5. As in Fig. 2 but for the assumptions applied in section 3b

and Fig. 3: j 5 (a) 0.2, (b) 0.5, and (c) 0.7, with j being the joint error

fraction. Additionally, the expected squared errors of a weighted

multimodel with the weights being incorrectly determined from

Eq. (9) rather than Eq. (16) are shown as triangles (simplistic

weights). The top abscissa shows the true optimum weights wopt

as obtained from Eq. (16).

1 AUGUST 2010 W E I G E L E T A L . 4183



wopt 5 0.40, and for R / ‘ the optimum weight ap-

proaches 0.5 for all r. This behavior is plausible, because

multimodel combination not only reduces the model er-

rors but also the errors due to noise. Thus, as R increases,

the optimum compensation of noise errors becomes more

and more important for the minimization of the total

projection error, and under the assumptions made, the

noise errors are optimally reduced by equal weighting. In

summary, when the effects of noise are neglected in the

formulation of optimum model weights, then the result-

ing estimates of wopt are implicitly biased, with the bias

growing quickly as R becomes larger. The bias is such that

too much weight would be given to the better one of the

two models, and too little weight to the poorer one.

How does the presence of unpredictable noise then

affect the quality of the multimodel projections? Figure 8

shows, in analogy to Figs. 2 and 5, the expected squared

errors SM1, SM2, S(2)
eq ,S(2)

opt, and S(2)
rand for (a) R 5 0.5, (b)

R 5 1, and (c) R 5 2. The definition of S(2)
rand is analogous

to Eq. (11). Additionally, Fig. 8 shows (as triangles) the

expected MSE of a weighted multimodel with the weights

being determined from Eq. (9) (assuming negligible noise)

rather than Eq. (19). As above in section 3b, this will be

referred to as simplistic weights, and the resulting MSE

as S(2)
simp. By that, we want to analyze what would happen

if r was accurately known and considered, but the noise

was neglected when calculating wopt.

The results can be summarized as follows. As R in-

creases, the difference between SM1 and SM2 decreases

and the two models become more similar in terms of

their net skill, because the individual model error terms

�M1 and �M2 lose are diminished in relative importance

with respect to the unpredictable noise. At the same

time, the range of r values for which the equally weighted

multimodel outperforms M2 (i.e., the better one of the

two single models) grows. Indeed, in section 3a it has

been noted that, under the absence of unpredictable noise,

S(2)
eq # SM2 only if r $

ffiffiffiffiffiffiffi
1/3
p

’ 0.58. However, if R 5

0.5, then S(2)
eq # SM2 for all r $

ffiffiffiffiffiffiffi
1/6
p

’ 0.40; and if R $ffiffiffiffiffiffiffi
0.5
p

’ 0.71, then the equally weighted multimodel

outperforms both single models for any r 2 [0, 1]. Taking

S(2)
eq as a benchmark, the additional error reduction by

optimum weighting decreases as R becomes larger. This

is simply because wopt approaches 0.5 for large R, and

thus S(2)
eq approaches S(2)

opt. The application of random

weights, on the other hand, still strongly diminishes the

expected skill for all r and R. Finally, note that the ap-

plication of simplistic weights derived from Eq. (9) rather

than Eq. (19) leads to a massive increase of the MSE

with respect to S(2)
eq , if r is small and R is on the order of

1 or larger. This illustrates how essential it is that the

effects of unpredictable noise be quantified and considered

when determining optimum weights. The implications and

relevance of these findings will be further discussed in

section 4. We finish this section with four remarks.

REMARK 1: Note that here we have made the sim-

plifying assumption that the noise terms nx, nM1, and nM2

are samples from the same distribution with variance sn
2.

FIG. 6. The conceptual framework for climate change projections for the assumptions applied

in section 3c. In contrast to Fig. 1, the observed climate change signal Dx is now thought to be

decomposable into a model predictable signal Dm and an unpredictable ‘‘noise’’ term nx.

Similarly, the climate change projection DyM1 (DyM2) is assumed to be decomposable into the

predictable signal Dm, a model error term �M1 (�M2), and a random noise term nM1 (nM2). The

noise and error terms are statistically independent from each other. All noise terms are as-

sumed to be samples from a distribution with standard deviation sn. The ratio R 5 sn/sM1 is

referred to as the relative noise ratio.
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However, our conceptual framework can be easily

generalized to differing internal variabilities s2
nx

, s2
nM1

,

and s2
nM2

. Under these conditions, wopt of Eq. (19) gen-

eralizes to

w
opt

5
r2 1 R2

2

1 1 r2 1 R2
1 1 R2

2

with R
1

5
s

n
M1

s
M1

and R
2

5
s

n
M2

s
M1

. (20)

For large internal variabilities, wopt then approaches

R2
2/(R1

2 1 R2
2) rather than 0.5 as above.

REMARK 2: What is the impact of noise if an infinite

number of models are combined as in Eq. (12)? If m

models are combined with equal weights, and if m / ‘,

the expected multimodel projection Dy
(m)
eq and the ex-

pected MSE S(m)
eq approach

lim
m!‘

Dy(m)
eq 5 lim

m!‘
Dm 1

1

m
�
m

i51
(�

M,i
1 n

M,i
)

" #
5 Dm (21)

and

lim
m!‘
S(m)

eq 5 lim
m!‘

s2
n 1

1

m2
�
m

i51
(s2

M,i 1 s2
n)

" #
5 s2

n. (22)

A multimodel can thus at best provide an unbiased esti-

mate of the predictable signal Dm, but not the actual out-

come Dx. This is plausible, because model combination

can only cancel out the noise terms nM stemming from

internal model variability; the unpredictable noise of

the observations, nx, remains. Optimally and randomly

weighted multimodels can be shown to approach the same

limit. The only difference is that the optimally weighted

multimodel converges more quickly than the equally

weighted one, while the randomly weighted multimodel

converges more slowly.

REMARK 3: What happens if two models have been

run with several ensemble members stemming from

different initial conditions? Let NM1 and NM2 be the

ensemble sizes of M1 and M2; that is, NM1 (NM2) in-

dependent samples of nM1 (nM2) are available. Averag-

ing the ensemble members of each model prior to model

combination yields the following expected MSEs:

S
M1

5 s2
n 1

s2
n

N
M1

1 s2
M1

S
M2

5 s2
n 1

s2
n

N
M2

1 s2
M2. (23)

Thus, in comparison to Eq. (2) the contribution of noise

to the total projection uncertainty is strongly reduced,

but the contribution of model error remains. This has

implications on wopt, which is now given by

w
opt

5

r2 1
R2

N
2

1 1 r2 1
1

N
1

1
1

N
2

� �
R2

. (24)

FIG. 7. Optimum weights wopt under the influence of internal variability (‘‘noise’’) as ob-

tained from Eq. (19). The contour lines show wopt as a function of r (model error ratio) and R

(relative noise ratio). Here, R 5 0 corresponds to the case of negligible noise.
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If NM1 and NM2 become very large, Eq. (24) approaches

Eq. (9), that is, the value of wopt for negligible noise. In

other words, the availability of many ensemble members

increases (reduces) the weight to be put on the better

(weaker) of the two models—a pattern of behavior that

has already been observed and discussed within the con-

text of seasonal forecasting by Weigel et al. (2007).

REMARK 4: In this section we have assumed that the

model errors are independent (i.e., that j 5 0). However,

also under the presence of noise, it is straightforward to

generalize the projection context to the situation of j .

0, as in section 3b. In this case, the optimum multimodel

mean would converge to (Dm 1 �j) rather than Dm, and

the limit of the MSE would be (sj
2 1 sn

2) rather than sn
2.

However, even more than in section 3b, the presence of

joint errors has only minor implications on the relative

performance of the weighted versus unweighted multi-

models and will, therefore, not be further discussed here.

4. Discussion

As all results presented above are based on a simple

conceptual framework, they are as such only valid to the

degree that the underlying assumptions hold. Most likely,

our most unrealistic assumption is that the emission un-

certainty has been entirely ignored. In principle, emission

uncertainty could be conceptually included in Eq. (1) by

adding an emission scenario error term s to DyM, such

that DyM 5 Dm 1 �M 1 nM 1 s. However, in a multi-

model ensemble, all contributing single models are typi-

cally subject to the same emission scenario assumptions

and thus the same scenario error s. Therefore, the impacts

of emission uncertainty on the relative performance of

single models versus multimodels are probably very small.

Rather, it is that the absolute projection accuracy would

be heavily affected, in that both single-model and mul-

timodel MSEs would be systematically offset by s2 with

respect to the errors discussed in section 3. This of

course has severe consequences for our interpretation of

climate projections in general, but does not affect our

discussion on model weights. Apart from the issue of

emission uncertainty, the conceptual framework involves

many more simplifying assumptions, such as the omission

of interaction terms between the different uncertainty

sources, as mentioned by Déqué et al. (2007). However,

we believe that by having explicitly considered the ef-

fects of skill difference (via r), model error dependence

(via j), and noise (via R), the conceptual framework,

despite its simplicity, is realistic enough to allow some

generally valid conclusions.

The least surprising conclusion to be drawn is proba-

bly that equally weighted multimodel combination on

average improves the reliability of climate projections—

a conclusion that is fully consistent with what is known

from many verification studies in weather and seasonal

forecasting (e.g., Hagedorn et al. 2005; Palmer et al.

2004; Weigel et al. 2008b). Regardless of which values

for r, j, and R are chosen, the expected MSE of the

FIG. 8. As in Fig. 2, but for the assumptions applied in section 3c

and Fig. 6: R 5 (a) 0.5, (b) 1, and (c) 2, with R being the relative

noise ratio. Additionally, the expected squared errors of a weighted

multimodel with the weights being wrongly determined from

Eq. (9) rather than Eq. (19) are shown as triangles (simplistic

weights). The top abscissa shows the true optimum weights wopt as

obtained from Eq. (19).

4186 J O U R N A L O F C L I M A T E VOLUME 23



multimodel is lower than the average MSE of the par-

ticipating single models. Moreover, and again consistent

with experience from shorter time scales, it has been

shown that in principle model weighting can optimize

the skill, if properly done. However, this requires an

accurate knowledge of r—the key problem in the con-

text of climate change.

Any estimate of r is to some degree necessarily based

on the assessment of past and present model perfor-

mance, and it needs to be extrapolated into the future to

be of use for model weighting. In essence, the assump-

tion must be made that r is stationary under a changing

climate, which is problematic since other physical pro-

cesses may become more relevant and dominant in the

future than they are now (Knutti et al. 2010). This ap-

prehension is backed by recent analyses of Christensen

et al. (2008) and Buser et al. (2009), who have shown that

systematic model errors are likely to change in a warm-

ing climate. However, even if r was stationary under

a changing climate, we would still be confronted with the

problem of how to determine a robust estimate of r on

the basis of the available data. In contrast to, say, sea-

sonal forecasting, the multidecadal time scale of the

predictand strongly limits the number of independent

verification samples that could be used to quantify r.

This problem is aggravated by the fact that over the

larger part of the past century, the anthropogenic cli-

mate change signal was relatively weak in comparison to

the internal variability. Indeed, Kumar (2009) has shown

that for small signal-to-noise ratios (on the order of 0.5)

even 25 independent verification samples, a sample size

which would actually be very large on multidecadal time

scales, is hardly enough to obtain statistically robust skill

estimates. Attempts have been made to try and cir-

cumvent this sampling issue by estimating model error

uncertainties on the basis of other variables that can be

verified more easily, such as systematic model biases

(e.g., Giorgi and Mearns 2002). However, this leaves the

question as to whether such ‘‘alternative’’ variables are

representative for a model’s ability to quantify multi-

decadal climate change signals. Whetton et al. (2007),

Jun et al. (2008), Knutti et al. (2010), and other studies,

for example, show that the correlations between present-

day model performance (in terms of such alternative

variables) and future changes are in fact weak, and within

the context of monthly forecasting, Weigel et al. (2008a)

have shown that those areas with the best bias charac-

teristics are not necessarily those areas with the highest

monthly prediction skill.

Given all of these fundamental problems in quanti-

fying r, it seems that at the moment there is no consensus

on how robust model weights can be derived in the sense

of Eq. (9)—apart from one exception: If we know

a priori that a given model M1 cannot provide a mean-

ingful estimate of future climate while another model

M2 can (e.g., because M1 is known to lack important key

mechanisms that are indispensable to providing correct

climate projections, while M2 has them included), then

it may be justifiable to assume that sM2� sM1 and thus

r 5 0. For small R, this would then correspond to re-

moving M1 entirely from the multimodel ensemble. In

fact, some studies have found more consistent projec-

tions when eliminating poor models (e.g., Walsh et al.

2008; Perkins and Pitman 2009; Scherrer 2010). In the

general sense, however, model weights bear a high risk

of not being representative of the underlying uncer-

tainties. In fact, we believe that the possibility of in-

advertently assigning nearly random weights as analyzed

in section 3 is not just an academic play of thoughts, but

rather a realistic scenario.

Under such conditions, the weighted multimodel yields

on average larger errors than if the models had been

combined in an equally weighted fashion. In fact, unless

r and R are very small, the potential loss in projection

accuracy by applying unrepresentative weights is on av-

erage even larger than the potential gain in accuracy by

optimum weighting. Also this aspect finds its equivalent

in the context of seasonal forecasting. In an analysis of

2-m temperature forecasts stemming from 40 yr of hind-

cast data of two seasonal prediction systems, Weigel et al.

(2008b) have shown that the equally weighted combi-

nation of these two models yields on average higher skill

than any of the two single models alone, and that the

skill can be further improved if optimum weights are

applied (the optimum weights have thereby been defined

grid-point wise). However, if the amount of independent

training data is systematically reduced, the weight esti-

mates become more uncertain and the average predic-

tion skill drops (see Table 1 for skill values). In fact, if

the weights are obtained from less than 20 yr of hindcast

data, weighted multimodel forecasts are outperformed

by the equally weighted ones. Particularly low skill is

obtained for random weights, as can be seen in Table 1.

However, note that even the randomly weighted multi-

model still outperforms both single models.

In summary, our results suggest that, within the con-

text of climate change, model combination with equal

rather than performance-based weights may well be the

safer and more transparent strategy to obtain optimum

results. These arguments are further strengthened if the

magnitude of the noise becomes comparable to or even

larger than the model error uncertainty; that is, if R * 1.

Under these conditions, the optimum weights have been

shown to approach 0.5. This means, for large R, equal

weighting essentially is the optimum way to weight the

models (see Figs. 8b and 8c), at least if the models to be
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combined have comparable internal variability. Table 2

provides some rough estimates of R obtained from other

studies found in the literature. While these studies are

based on different methods and projection contexts,

which can lead to considerably different estimates of R,

they all show that R can indeed be large enough so that

the application of model weights would only be of mod-

erate use, even if the model error ratios were accurately

known. This is particularly relevant if variables with low

signal-to-noise ratios are considered (e.g., precipitation

rather than temperature), if relatively small spatial and

temporal aggregations are evaluated (e.g., a 10-yr average

over central Europe rather than a 30-yr global average),

if the lead times are comparatively short (e.g., 20 yr

rather than 100 yr), and if no ensembles are available to

sample the uncertainty in the initial conditions.

5. Conclusions

Multimodel combination is a pragmatic and well-

accepted technique to estimate the range of uncertainties

induced by model error and to improve the climate pro-

jections. The simplest way to construct a multimodel is

to give one vote to each model, that is, to combine the

models with equal weights. Since models differ in their

quality and prediction skill, weighting the participating

models according to their prior performance has been

suggested, which is an approach that has been proven to

be successful in weather and seasonal forecasting. In the

present study, we have analyzed the prospects and risks

of model weighting within the context of multidecadal

climate change projections. It has been our aim to arrive

at a conclusion as to whether or not the application of

model weights can be recommended.

On shorter time scales, such an assessment can be

carried out in the form of a statistically robust verifi-

cation of the predictand of interest. For climate change

projections, however, this is hardly possible due to the

long time scales involved. Therefore, our study has been

based on an idealized framework of climate change pro-

jections. This framework has been designed such that it

allows us to assess, in generic terms, the effects of mul-

timodel combination independently of the model error

magnitudes, the degree of model error correlation, and

the amount of unpredictable noise (internal variability).

The key results, many of which are consistent with ex-

perience from seasonal forecasting, can be summarized

as follows:

1) Equally weighted multimodels yield, on average,

more accurate projections than do the participating

single models alone, at least if the skill difference

between the single models is not too large.

2) The projection errors can be further reduced by

model weighting, at least in principle. The optimum

weights are thereby not only a function of the single

model error uncertainties, but also depend on the

degree of model error correlation and the relative

magnitude of the unpredictable noise. Neglecting the

latter two aspects can lead to severely biased esti-

mates of optimum weights. If model error correlation

is neglected, the skill difference between the two

models is underestimated; if internal variability is

neglected, the skill difference is overestimated.

3) Evidence from several studies suggests that the task

of finding robust and representative weights for cli-

mate models is certainly a difficult problem. This is

due to (i) the inconveniently long time scales con-

sidered, which strongly limit the number of available

verification samples; (ii) nonstationarities of model

skill under a changing climate; and (iii) the lack of

convincing alternative ways to accurately determine

skill.

4) If model weights are applied that do not reflect the

true model error uncertainties, then the weighted

multimodel may have much lower skill than the un-

weighted one. In many cases, more information may

actually be lost by inappropriate weighting than can

potentially be gained by optimum weighting.

5) This asymmetry between potential loss due to inap-

propriate weights and potential gain due to optimum

weights grows under the influence of unpredictable

noise. In fact, if the noise is of comparable or even

TABLE 1. Average global prediction skill of seasonal forecasts

(June–August) of 2-m temperature with a lead time of 1 month, ob-

tained from the Development of a European Multimodel Ensemble

System for Seasonal-to-Interannual Prediction (DEMETER) data-

base (Palmer et al. 2004) and verified against 40-yr European Centre

for Medium-Range Weather Forecasts (ECMWF) Re-Analysis

(ERA-40) data (Uppala et al. 2005) for the period 1960–2001.

Skill is measured by the positively oriented ranked probability skill

score (RPSS; Epstein 1969). The verification context is described in

detail in Weigel et al. (2008b). Shown is the RPSS for ECMWF’s

‘‘System 2’’ (M1), for the Met Office’s ‘‘GloSea’’ (M2), and for

multimodels (MM) constructed from M1 and M2 with (i) equal

weights; (ii) with optimum weights obtained grid-point wise from

40, 20, and 10 yr of hindcast data by optimizing the ignorance score

of Roulston and Smith (2002); and (iii) with random weights. Skill

values are given in percent.

M1 M2 MM MM MM MM MM

Equal

w

Optimum

w

Optimum

w

Optimum

w

Random

w

(40 yr) (20 yr) (10 yr)

20.6 24.5 5.6 7.2* 5.8 4.1 3.0

* Weigel et al. (2008b) obtain a higher value (9.4) because they

include climatology (i.e., information from observation data) in

the weighting process.
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larger magnitude than the model errors, then equal

weighting essentially becomes the optimum way to

construct a multimodel, at least if the models to be

combined have similar internal variability. In prac-

tice, this is particularly relevant if variables with low

signal-to-noise ratios are considered (e.g., precipita-

tion rather than temperature), if high spatial and

temporal detail is required, if the lead times are

short, and if no ensemble members are available to

sample the uncertainty of the initial conditions.

These results do not imply that the derivation of

performance-based weights is impossible by principle.

In fact, near-term (decadal) climate predictions, such as

those planned for the Intergovernmental Panel on Cli-

mate Change’s (IPCC) fifth assessment report (Meehl

et al. 2009), may contribute significantly to this objective

in that they can serve as a valuable test bed for assessing

projection uncertainties and characterizing model per-

formance. Moreover, also within the presented frame-

work eliminating models from an ensemble can be

justified if they are known to lack key mechanisms that

are indispensable for meaningful climate projections.

However, our results do imply that a decision to weight

the climate models should be made with the greatest care.

Unless there is a clear relation between what we observe

and what we predict, the risk of reducing the projection

accuracy by inappropriate weights appears to be higher

than the prospect of improving it by optimum weights.

Given the current difficulties in determining reliable

weights, for many applications equal weighing may well

be the safer and more transparent way to proceed.

Having said that, the construction of equally weighted

multimodels is not trivial, either. In fact, many climate

models share basic structural assumptions, process un-

certainties, numerical schemes, and data sources, im-

plying that with a simple ‘‘each model one vote’’ strategy

truly equal weights cannot be accomplished. An even

higher level of complexity is reached when climate pro-

jections are combined that stem from multiple GCM-

driven regional climate models (RCMs). Very often in

such a downscaled scenario context, some of the avail-

able RCMs have been driven by the same GCM, while

others have been driven by different GCMs (e.g., Van

der Linden and Mitchell 2009). Assigning one vote to

each model chain may then result in some of the GCMs

receiving more weight than others, depending on how

many RCMs have been driven by the same GCM.

Given these problems and challenges, model combi-

nation with equal weights cannot be considered to be

a final solution, either, but rather a starting point for

further discussion and research.
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