ETH zürich

Cloud from a Chip Developments in Microfluidic Ice Nucleation Experiments

Nadia Shardt

Institute for Atmospheric and Climate Science, ETH Zurich Dept. of Chemical Engineering, Norwegian University of Science and Technology (NTNU)

Atmospheric Physics

Prof. Ulrike Lohmann Claudia Marcolli Zamin Kanji Michael Rösch

2

Prof. Marco Mazzotti Leif-Thore Deck Imad El-Bakouri

Atmospheric Chemistry

Prof. Thomas Peter Claudia Marcolli Ulrich Krieger

Microfluidics

Prof. Andrew deMello Stavros Stavrakis **Florin Isenrich**

+ Roland Walker,
Fredy Mettler,
& Benedikt Waser

Motivation

- Presence or absence of ice in clouds affects
 - how much sunlight is absorbed, reflected, or transmitted through clouds
 - if and how much precipitation will fall
- To understand $\stackrel{\frown}{\frown}$ and forecast $\stackrel{\frown}{\frown}$, we need to first predict when ice forms
 - homogeneous and heterogeneous nucleation

How is ice formation investigated?

- Suspended droplets **short** residence times
- Drop(s) on substrate large drop volumes
- Emulsions
 polydisperse droplet size

- Recently, droplets from microfluidic instruments*
 - long residence times
 - small droplet volumes (nL to pL)
 - monodisperse droplet size

* Reicher et al. **2018** *AMT*, 11. Brubaker et al. **2020** *Aerosol Sci Technol*, 54. Tarn et al. **2021** *Micromachines*, 12(2). Roy et al. **2021** *Micromachines*, 12(3).

What is microfluidics?

• Manipulation and control of liquids at sub-microliter volumes

Microfluidic devices for studying ice nucleation

• **On-chip** droplet generation and cooling

Reicher et al. 2018 AMT, 11.

Tarn et al. 2021 Micromachines, 12(2).

Brubaker et al. 2020 Aerosol Sci Technol, 54.

Roy et al. 2021 Micromachines, 12(3).

Microfluidic devices for studying ice nucleation

- **On-chip** droplet generation and cooling
 - droplets shrink in the polymer device
 - high temperature uncertainty

Can we rethink how we use microfluidics to study ice nucleation?

Outline

1. New microfluidics-based instrument

2. Homogeneous nucleation rate of water

Droplet cooling

Courtesy of Roland Walker

Photo by Imad El-Bakouri

Droplet cooling

Photo by Imad El-Bakouri

- By separating droplet generation and storage,
 - droplets are stable in storage
 - temperature accuracy is improved (± 0.2 K)

Outline

The Microfluidic Ice Nuclei Counter Zürich (MINCZ): a platform for homogeneous and heterogeneous ice nucleation

Florin N. Isenrich^{1,★}, Nadia Shardt^{2,★}, Michael Rösch², Julia Nette¹, Stavros Stavrakis¹, Claudia Marcolli², Zamin A. Kanji², Andrew J. deMello¹, and Ulrike Lohmann²

¹Institute for Chemical and Bioengineering, ETH Zurich, Zürich, 8093, Switzerland ²Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, 8092, Switzerland [★]These authors contributed equally to this work.

Correspondence: Nadia Shardt (nadia.shardt@env.ethz.ch) and Andrew J. deMello (andrew.demello@chem.ethz.ch)

1. New microfluidics-based instrument

Isenrich et al. **2022** *AMT*, 15, 5367–5381.

2. Homogeneous nucleation rate of water

Outline

The Microfluidic Ice Nuclei Counter Zürich (MINCZ): a platform for homogeneous and heterogeneous ice nucleation

Florin N. Isenrich^{1,*}, Nadia Shardt^{2,*}, Michael Rösch², Julia Nette¹, Stavros Stavrakis¹, Claudia Marcolli², Zamin A. Kanji², Andrew J. deMello¹, and Ulrike Lohmann²

¹Institute for Chemical and Bioengineering, ETH Zurich, Zürich, 8093, Switzerland ²Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, 8092, Switzerland *These authors contributed equally to this work.

Correspondence: Nadia Shardt (nadia.shardt@env.ethz.ch) and Andrew J. deMello (andrew.demello@chem.ethz.ch)

1. New microfluidics-based instrument

Isenrich et al. 2022 AMT, 15, 5367-5381.

2. Homogeneous nucleation rate of water

Nucleation rates from pL-droplet instruments

wide spread of nucleation rates across orders of magnitude...

large uncertainty

Fraction of droplets frozen vs. temperature

Fraction of droplets frozen vs. temperature

Nucleation rate J_V from frozen fraction

$$J_{\rm V} = -\frac{1}{V(t_2 - t_1)} \ln\left(\frac{1 - f_2}{1 - f_1}\right)$$

where V is droplet volume $t_2 - t_1$ is an increment in time f is the fraction of droplets that are frozen

Experimental homogeneous nucleation rate of water

scatter from experimental error? or scatter from randomness of nucleation?

use Monte Carlo simulation to determine how much scatter comes from randomness

Monte Carlo simulation

example: coin toss yes heads (H) Generate random $p \le 0.5$ number *p* between 0 and 1 tails (T) no тннтн ΗТ н ННННТТ нн нтнннтттн Т

Monte Carlo simulation

of a population of droplets being cooled

Generate a random number

Compare random number

Calculate nucleation rate

for each droplet at every temperature

to probability of nucleation

from simulated frozen fraction

: scatter from randomness of nucleation

recover underlying nucleation rate

27

= can recover underlying rate

Experimental homogeneous nucleation rate of water

Comparison to other pL-droplet instruments

obtained new high-accuracy data over a wide temperature range

Outline

1. New microfluidics-based instrument

Isenrich et al. 2022 AMT, 15, 5367-5381.

2. Homogeneous nucleation rate of water

Shardt et al. 2022 PCCP, 24, 28213.

Conclusions

- . Developed new microfluidics-based instrument Isenrich et al. 2022 AMT, 15, 5367–5381.
- 2. Precisely measured the nucleation rate of water
- Shardt et al. 2022 PCCP, 24, 28213.

- Wide temperature range with 75 & 100 μm droplet diameters cooled at 0.1 and 1.0 K min^{-1}
- Insight from Monte Carlo simulations for obtaining a parameterization of nucleation rate

Conclusions

. Developed new microfluidics-based instrument Isenrich et al. 2022 AMT, 15, 5367–5381

Improved our understanding of and ability to predict ice nucleation, aiming towards improved predictions of 2^{-1} and 2^{-1}