Competing Ice Nucleation in Cirrus Clouds:

Mineral Dust vs Aviation Soot

Bernd Karcher
DLR Institute of Atmospheric Physics

Virtual INP Colloquium e May 11,2023




In a world with conflicting information ...




... perhaps this talk can provide some guidance:

Basic ice microphysics

— homogeneous freezing events and how INPs modify them
— INP number-size and ice activation spectra

Simulation scenarios

Results

— soot-perturbed cirrus and dust-perturbed cirrus
— competing ice nucleation including both INP types

Take aways



Homogeneous freezing events (supersaturation equation)

vapor sink due to ice nucleation and deposition growth
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How INPs modify homogeneous freezing events

ds additional vapor sink due to INP activation
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— number of nucleated ice crystals is limited by available INPs
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main effects: ice supersaturation ——>

— INPs act to reduce ds/dt and therefore total n,, depending mainly on nj and T

— atlow s, INPs may prevent or cut-off homogeneous freezing (high n, or low w, T)



INP number-size and ice activation spectra
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Simulation cases

quasi-Lagrangian superpressure balloon data: Podglajen et al, GRL 2016

Case Features

Hom Homogeneous freezing of supercooled liquid solution droplets
Soot Hom + 500 L-! soot particles (D, = 29.3 nm, o = 1.72)
Dust Hom + 28 L~! dust particles

All Hom + Soot + Dust

midlatitude UT: 250 hPa, 220K
normally distributed INP numbers

random sampling of updraft speeds
from exponential distributions:

internal gravity waves incl.
high frequency contributions
w-std dev ¢ = 10-20 cm/s
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Scenarios (constant updrafts and INP numbers)

3 model cases: solution droplets + contrail-processed aviation soot alone (
solution droplets + mineral dust alone (Dust)

solution droplets + aviation soot + mineral dust (All)

104 = T T T L B T T T T T T T4
= ¢ 3 .
: Hom range of common mean ]
- Soot updraft speeds ... -
5| —— Dust
10 — Al

... where INPs are
potentially most influential

total ice crystal number concentration (L")
5

)



Scenarios (variability in updraft speed and INP number)

3 model cases: solution droplets + contrail-processed aviation soot alone ( )
solution droplets + mineral dust alone (Dust)
solution droplets + aviation soot + mineral dust (All)

3 forcing regimes: weak (c = 5 cm/s), average (c = |5 cm/s), strong (G = 25 cm/s)

2 data sets: only INPs form ice (PURE), competing nucleation (COMP)
nucleated ice I:1 line in case Dust
crystal number
COMP

PURE
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Competing ice nucleation in soot-perturbed cirrus

weak (5 cm s'1) average (15 cm 8'1) strong (25 cm S-T)
104 AL R RUESRE POLRRE N f et LR
10° COMP :
10° . .,
10'F . -
100 - o PURE
10-1 3 1 Illlllll2 I LIIIIIIIS 5 5 - 1 2 2
10 10 10 10 10 10 10 10 10

INP particle number concentration (L'1)

* the wide range of homogeneously nucleated ice numbers in COMP is caused
by wave-driven variability in updraft speeds

* number of COMP data points increase relative to PURE when going from
weak to strong wave forcing

 all PURE data points stay well below the |%-ice activity line: only up to 0.3%
of all contrail-processed aviation soot particles can become ice-active

* impact is weaker/stronger for smaller/larger PSD modal size (not shown), as
ice activation is strongly size-dependent



Competing ice nucleation in dust-perturbed cirrus

weak (5cms’)

average (15cms’)
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* the number of PURE data points is larger than in case Soot, since dust
affects homogeneous freezing already at lower supersaturation

* several PURE simulations end up on the |:1 line, revealing a significant
‘shadowing’ effect once dust is fully activated

* mineral dust is a very effective INP: fraction of PURE cases: 97% (weak),
79% (average), 62% (strong) — compare to 49% / 22% / 14% in case Soot

* for average forcing, reduction in homogeneously nucleated ICNC amounts
to 61% (122/L-air) — compared to only 12.5% (25/L) in case Soot



Competing ice nucleation (dust and soot)

weak (5cms’) average (15cms’)

strong (25 cm sui)
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Always make the audience suffer as much as possible

Take aways

* The broad distribution of nucleated ice numbers points to homogeneous freezing as
the key background formation process in cirrus modulated by INPs (if present).

* Even when INPs are not able to prevent homogeneous freezing in strong updrafts,
they may significantly reduce the number of homogeneously nucleated ice crystals.

* Even poor INPs may alter microphysical [but not necessarily optical] cirrus properties:
need full 3D cirrus cloud model to determine associated CREs.




More details in:

Cirrus Parameterization: https://doi.org/10.1029/2022ijd036907
Mineral Dust vs Aviation Soot https://doi.org/10.1029/2022JD037881
Aviation Soot https://doi.org/10.1038/s43247-021-00175-x

If you want a happy ending, this depends where you stop your story



