

Leaf water enrichment in deuterium shapes leaf wax *n*-alkane δD values of terrestrial plants

A. Kahmen¹, B. Hoffmann², E. Schefuss³, S. K. Arndt⁴, L. A. Cernusak⁵, J.B. West⁶, D. Sachse²

¹Institute of Agricultural Sciences, ETH Zurich, Switzerland
²DFG-Leibniz Center for Surface Process and Climate Studies, University of Potsdam, Germany
³MARUM – University of Bremen, Germany
⁴Department of Forest and Ecosystem Science, The University of Melbourne, Australia
⁵Australian National University, Australia
⁶Texas A & M University, USA

Introduction

Leaf wax *n*-alkanes are long-chain hydrocarbons that can persist in sedimentary records over geological timescales. Since their hydrogen isotopic composition (δ D) contains information on hydrological processes, leaf wax *n*-alkane δ D values have been advocated as powerful hydrological proxies. What hydrological information is recorded in leaf wax *n*-alkanes remains, however, unclear because critical processes that determine their δ D values have not been resolved. In particular the influence of leaf water evaporative deuterium enrichment (Δ D) on the δ D values of leaf wax *n*-alkanes has not been resolved and remains controversial.

Objectives

The objective of our work was to determine if leaf water evaporative Denrichment influences the δD of leaf wax *n*-alkanes. In a three-part study, were we

- performed experiments under controlled environmental conditions,
- 2) validated our experimental results along a natural climate gradient,
- 3) assessed the relevance of our finding on a global scale.

Experiment 1

To test the effects of leaf water ΔD on leaf wax *n*-alkane δD values we grew five plant species in two climate chambers that differed in atmospheric humidity (40% vs. 80% rh).

Fig. 2: A) Differences in xylem water, leaf water and concentration-weighed average (CWA) *n*-alkane δD values between the dry and the humid climate chamber for five plant species. B) The effect of leaf water ΔD on apparent fractionation (ϵ_{app}). The slope of the relationship indicates the fractional contribution of leaf water ΔD to the pool of biosynthetic water and illustrates thus the effect of leaf water ΔD on *n*-alkane δD (assuming a constant ϵ_{bio}). Grey lines indicate hypothetical 1:1 relationships between ϵ_{app} and ΔD , where leaf water contributes 100% to the biosynthetic water pool.

Fig. 1: Conceptual model summarizing the parameters that influence leaf wax *n*-alkane δD . In the model the δD of *n*-alkanes is driven by the δD of the biosynthetic water pool (BWP). If the BWP is influenced by the plant's source water and/or leaf water ΔD is the key question of this study. ε_{blo} is the biochemical fractionation between the BWP and *n*-alkane δD . ε_{app} is the difference between *n*-alkane δD and the δD of source water.

Experiment 2

To test if the our experimental results are also valid in "real world ecosystems" we assessed xylem water, leaf water and leaf wax *n*-alkane δD values along a natural climate gradient in Northern Australia.

Fig. 3: (A) Leaf water, xylem water and *n*-alkane δD values for *Eucalyptus* and *Acacia* species along the North Australian climate gradient. Leaf water is the modeled mean growing season (Oct – Nov – Dec) midday leaf water. (B) The relationship between apparent fractionation ϵ_{app} and leaf water ΔD for both genera (for explanations see also Fig. 2B). (C) Position of the six sampling sites along the gradient.

Results & Conclusions

- Our experiments show that leaf water ΔD has a critical impact on leaf wax *n*-alkane δD values.
- Although this effect applies to all plants it is stronger for dicotyledonous plants than for monocotyledonous plants.
- Our study implies that plant physiological processes need to be considered when leaf wax *n*-alkane δD values are interpreted as hydrological proxies.

Experiment 3

Since our experiments 1 and 2 indicated strong effects of leaf water ΔD on leaf wax *n*-alkane δD values, we tested the global relevance of this effect by simulating global patterns of leaf water ΔD .

Fig. 4: Global variation of leaf water evaporative

leaf wax *n*-alkanes is particularly strong in arid and temperate environments and weaker in humid tropical environments.

Acknowledgements

The authors would like to thank Edith Huber and Alison O'Keefe for help in the field along the North Australian Transect, Annika Ackermann and Roland Werner for analyzing the liquid water samples at ETH Zurich, and Johanna Menges (University of Potsdam) for lipid extraction and purification.

Funding: ERC Starting Grant COSIWAX to AK DFG Emmy-Noether Grant to DS

Contact: ansgar.kahmen@ipw.agrl.ethz.ch