Potentials and caveats in the use of isotopes to determine soil organic matter dynamics and stabilization

Johan Six

Department of Environmental Systems Science

ETH-Zurich

Understanding SOC turnover crucial for determining quantitative and temporal responses of local, regional, or global C and nutrient budgets to perturbations caused by human activities or climate change (Trumbore, 1993)

For the functioning of a soil ecosystem, the turnover of SOC is probably more significant than the sizes of SOC stocks (Paul, 1984)

Soil Organic matter Staying

C input gradient

How would aggregate C differ across this gradient?

Kong et al. 2005

Carbon input

Kong et al 2005, SSSAJ

Root- versus residue-derived C

Unlabeled roots &¹³C-labeled roots & shoots shoots

¹³C-labeled shoots & Unlabeled roots

Kong & Six 2010, SSSAJ

Root- versus residue-derived C

Kong & Six 2010, SSSAJ

Soil Organic matter Staying

Turnover of C based on ¹³C method

Conversion between C₃ and C₄ vegetation => change in ¹³C => proportion of C derived from original vegetation calculated with a simple mixing model

=> turnover of C calculated using a first-order decay model

MRT =
$$1/k$$
 = -t / ln (C_t / C_0)

MRT = mean residence time; t = time since conversion; C_t = C content derived from original vegetation at time t C_0 = C content at t = 0.

SOC MRT estimated with ¹³C

	lowest	highest	average +/- stderror	sites/studies
	Μ	ean Residenc	e Time (yrs)	
Tropical	13	108	35 +/- 6	10 / 13
Temperate	14	141	63 +/- 7	19 / 12

Six et al. 2002, Agronomie

Effect of tillage on MRT of total C

Site (Reference) ^d	Cropping System ^a	MRT (yr)
Sidney, Nebraska (1)	Wheat-fallow (NT)	73
-	Wheat-fallow (CT)	44
Delhi, Ontario (2)	Corn (NT)	26
	Corn (CT)	14
Boigneville, France (3)	Corn (NT)	127
	Corn (CT)	55
Rosemount, Minnesota (4)	Corn (NT)	118
	Corn (CT)	73
	Corn (NT)	54
	Corn (CT)	72
Average ± stderr ^c	NT	80 ± 19
_	СТ	52 ± 11

^a (1) Six et al., 1998; (2) Ryan et al., 1995; (3) Balesdent et al., 1990; (4) Clapp et al., 2000

Six et al. 2002, Agronomie

Estimation of SOC turnover/MRT

Four approaches: * First order modeling of C changes * ¹³C natural abundance technique * ¹⁴C-dating * 'bomb' ¹⁴C

A wide range of estimates (yr) for cultivated systems

* first order: 67 ± 12 (N = 7) (Six and Jastrow, 2001) * ¹³C: 61 ± 9 (N = 20) (Six and Jastrow, 2001) * ¹⁴C-dating: 880 ± 105 (N = 20) (Six and Jastrow, 2001) * bomb ¹⁴C: 1863 (N = 17) (Harrison et al. 1993)

=> What's going on ????

Estimation of SOC turnover/MRT

Paul et al. 2001, Geoderma

* SOC is a heterogeneous mixture of pools with different turnovers * Different timescales of the methods...

¹³C method used in medium-term experiments (5-50 yr) => estimate of turnover dominated by C pools that cycle within the time frame of the experiment => labile C pools

Time frame of ¹⁴C-dating technique: 200-40,000 yr (Goh, 1991) => estimate of turnover dominated by oldest and most recalcitrant C pools

Solution ?

Account for heterogeneity of SOC and use methodologies with time frames appropriate for the defined pools.

Our approach:

- * divided total SOC into a labile and a resistant pool
- * determined turnover of labile pool with the ¹³C method and turnover of resistant pool by ¹⁴C-dating

Methodology

- * Agricultural experiment sites under continuous corn
- * Sampled 0-20, 25-50 and 50-100 cm depth
- * Acid hydrolysis: labile C = hydrolyzable C; resistant C = non-hydrolyzable C
- * ¹³C mass-spectrometry of total soil C
- * ¹⁴C-dating of total soil C and resistant C

(Collins et al. 1999; Paul et al. 2001; Collins et al. 2000)

Turnover labile C

Conversion from forest (C₃) to corn (C₄) system \Rightarrow change in ¹³C \Rightarrow proportion forest derived C calculated with a simple mixing model \Rightarrow turnover forest derived C calculated using a first-order decay model

MRT =
$$\frac{1}{k} = \frac{-t}{\ln(L_{t}/L_{0})}$$

MRT = mean residence time or turnover; t = time since conversion; $L_t =$ labile C content derived from forest at time t calculated as Whole soil $C_t - (C_0 * \% \text{ non-hydrolyzable})$ $L_0 =$ labile C content at t = 0. Whole seil $C_0 - (C_0 * \% \text{ non-hydrolyzable})$

MRT (yr) of labile, resistant and total C (0-20 cm)					
Site	Labile	Resistant*	Total	¹⁴ C*	¹³ C*
Lamberton, MN	39 ± 4	1510	759	1095	96 ± 14
Arlington, WI	30 ± 2	2840	1437	485	82 ± 7
KBS, MI	18 ± 5	1435	656	546	39 ± 9
Saginaw, MI	13 ± 2	2482	1569	1383	60 ± 7
Hoytville, OH	26 ± 6	1770	$\frac{830}{1050 \pm 100}$	<u>920</u>	70 ± 13
S. Charleston, OF	$H = 23 \pm 0.5$	nd*	nd	modern	66 ± 2
Wooster, OH	32 ± 1	nd	nd	nd	64 ± 1

* Data from Paul et al. 2001 and Collins et al. 2000; nd = not determined

Analytical determination of labile C turnover Collins et al. 2000

* Mineralized soil C measured in extended incubations (25°C)

* Curve fitting of the CO2 evolved per unit time using a constrained two pool first-order model

* Field MRT was calculated by assuming Q10 = 2

MRT (yr) of labile C			
Site	0-20 cm	25-50 cm	50-100 cm
Lamberton, MN	39 ± 4 increation increases 38 ± 2	$\frac{1}{2} = \frac{59 \pm 4}{32 \pm 2}$	125 ± 13 = 26 ± 0.4
Arlington, WI	30 ± 2 32 ± 4	62 ± 6	192 ± 24 36 + 0.5
Hoytville, OH	26 ± 6 35 + 6	211 ± 41 33 + 6	50 ± 0.5 511 ± 117 19 ± 0.1
Wooster, OH	35 ± 0 32 ± 1 35 ± 1	104 ± 13	17 ± 0.1 134 ± 3 23 ± 2
KBS, MI	18 ± 5	$r = 3 \pm 3$ nd nd	nd nd
Saginaw, MI	13 ± 2	84 ± 6	254 ± 6
S. Charleston, O	H 23 ± 0.5	63 ± 3	66 ± 14

* Recalculated from incubation by Collins et al. 2000

Summary

Order of magnitude difference in MRT of total SOC estimated by ¹³C method versus ¹⁴C-dating.

Our total SOC MRT estimate similar to ¹⁴C-dating estimate: 1050 ± 190 versus 890 ± 170

In the 0-20 cm surface layer, our estimates of MRT of labile C very similar to analytical determined MRT by Collins et al. 2000 29 ± 3 versus 33 ± 2

MRT of labile C increased with depth: 13-39 yr for 0-20 cm layer 59-211 yr for 25-50 cm layer 66-511 yr for 50-100 cm layer

Mechanisms governing SOC turnover

Six et al. 2002 SSSAJ

Stabilization within macroaggregates

Kong et al 2005, SSSAJ

Stabilization in micro-within-macroaggregates

Kong et al 2005, SSSAJ

¹³C-PLFA distribution

Kong et al. 2011, SBB

Aggregate C turnover based on ¹³C

Treatment	MRT macroaggregates	Microaggregates in macroaggregates	Inter- microaggregate POM	Intra- microaggregate POM
	yrs	%	g C kg ⁻¹ sandfree macroaggregates	
NT	27	47.1	1.3	11.1
СТ	8	27.0	2.8	3.8

Six et al. 2000, SBB

Turnover of micro- and macroaggregate associated C

	Ag		
Reference	Siz	e Class ^a (µm)	MRT
Skjemstad et al., 1990	М	> 200	60
	m	< 200	75
Jastrow et al., 1996	Μ	212-9500	140
	m	53-212	412
Buyanovskv et al 1994	Μ	250-2000	1.3
But what about	ut th	e turnov	er 7
Monre:			14
of the aggrega	ates	themselv	ves? 61
Angers and Giroux, 1996	Μ	> 250	42
	m	50-250	691
Six et al., 1999	Μ	250-2000	27
	m	53-250	137
Six et al., 1999	Μ	250-2000	8
	m	53-250	79
Average ± standarderror	Μ		42 ± 18
<u> </u>	m		209 ± 95

 a M = macroaggregate; m = microaggregate.

Six et al. 2002, Agronomie

Aggregate turnover ~ direct measurement

A = Large macroaggregatesB = Small macroaggregates C = microaggregates D = Silt and clayB Breakdown Formation

Rare Earth Oxide Methodology

De Gryze et al. 2006, EJSS

Rare Earth Oxide Methodology

De Gryze et al. 2006, EJSS

Aggregate turnover ~ direct measurement

Turnover Time

Macroaggregates: 30 days

Microaggregates: 88 days

De Gryze et al. 2006, EJSS

AggModel

Simulating aggregate and SOC dynamics

Segoli et al 2013, Ecol. Mod.

Macroaggregate formation rate

De Gryze et al. 2005, SSB

Macroaggregate formation rate

De Gryze et al. 2005, SSB

Modeled aggregate turnover

Macroaggregate turnover = 31 days

Microaggregate turnover = 181 days

Segoli et al. 2013, Ecol. Mod.

OM addition stimulates macro-aggregate formation and subsequent microaggregate development

Free OM addition declines via decomposition and incorporation into macroand later micro-aggregates

Segoli et al. 2013, Ecol. Mod.

EPIC- Environmental Policy Impact Calculator

Carbon Flows

Izaurralde et al., 2006

EPIC – Environmental Policy Impact Calculator

EPIC with measurable soil organic matter

Conclusions

Root input is main source of SOC stabilized in microaggregates

Combine ¹³C and ¹⁴C method to estimate SOC turnover

Macroaggregate turnover of about a month Microaggregate turnover of 3-6 months

Combine multiple experimental approaches with modeling to really understand dynamics

THANK YOU!!!