

Markus Reichstein

### The importance of multiple observational constraints for modelling soil organic matter cycling



Marion Schrumpf Jernhard Ahrens, Marion Schrumpf, Sönke

Zaehle

MPI-Biogeochemistry, Jena



**Thomas Wutzler** 



**Bernhard Ahrens** 







Sönke Zaehle

Isocycles 2017: 15-20 October, Monte Verità, Ascona, Switzerland

### Soils feed back to climate change



### SOM explained by ecosystem properties more than by chemical litter properties



3

### Soil microbes couple C and N cycle by narrow stoichiometric constraints



- "The eye of the needle"
- Stoichiometry: Stoichiometry: Microbes need about 1 mol N per 25 mol C (C/N = 25)
- Control mineralization flux
  - C: respiration
  - N: to inorganic N
    - Leaching
    - Plant availability

### Essential requirements for SOM models



### Outline

What is a surprise ? => mental models

Soil model developments

Equifinality: Isotopes to the rescue

Challenges with multiple data streams

Discussion: <sup>13</sup>C to study microbial processing



### What is a surprise? or On modelling for data interpretation



... is an observation we have not expected (very subjective!)

Better: ... is an observation which would not have predicted by our (mind) model.

**model needs to be made explicit.** 

Given our current understanding embedded in model XYZ, observation ABC is unexpected (or unlikely).

**No model, no surprise !!** 

#### **Example: warming experiment**





mental model: non-dynamic system

Complicated explanation for "surprise": acclimation





### What is a surprise?



What is your mental model? Make it explicit.

Long-term: balance you inputs

### Soil Model developments

1) SOMmicrobial interactions SOM-soil matrix interactions

Interactions between C, H2O, N, P cycles Vertical variation of soil processes including transport.

#### 1) SOMmicrobial interactions

3) C-N Interactions

### Microbial turnover partitions between recycling and SOM



# Emergent community controls on CUE by Individual based modelling



Kaiser 2014 15

### Functional groups model adaptations to resource stoichiometry



Needs parameterization of several functional populations

### SEAM models adaptation of enzyme production

Conceptual Soil Enzyme Allocation Model



Wutzler T, Sönke Zaehle, Schrumpf M, Ahrens B & Reichstein M (2017) SBB 17

SOM-soil matrix interactions

Vertical variation of soil processes including transport.

### **COMISSION model**

Above- and belowground plant inputs



**Bernhard Ahrens** 



### **COMISSION** at CarboEurope sites



### Soil model developments

#### CUE

**Microbial stoichiometry** 

**Microbial diversity** 

Vertical transport

Sorptive stabilization

**Comission model** 



### Isotopes to the rescue

How can we constrain the daunting complexity?



### Increase in model complexity



### How can we constrain the complexity?



### Philosophical Debate about Validation

- "All models are wrong, but some models are useful"
  After George Box 1976
- Model should be parsimonious
  - As simple a possible -> Abstract from some reality features
  - Models can only be as complex as we have data to constrain them
- Always think about purpose
  - Heuristics: Representations that guide further study
  - Most useful when challenging existing formulations

# Equifinality several models can fit a single data set

Maarten Braakhekke



Braakhekke, M. C., Wutzler, T., et al. (2013) Modeling the vertical soil organic matter profile using Bayesian parameter estimation, Biogeosciences

### Isotopes to the Rescue!

#### We need multiple data streams



**p1** 



Braakhekke M, Wutzler T, Reichstein M, et al. (2013) *Biogeosciences* 28

### Available data streams

physical fractions of seil carbon and nitrogen stocks

bulk flux and isoflux observation of and between different compartments

their isotopic signatures

across soil depth

### Using Model-data-integration for testing model hypotheses



src: www.economicsuk.com/blog/001487.html



### <sup>14</sup>C helps deciding between model structures



### <sup>14</sup>C informs a two-pool model





Posterior distributions of three selected parameters calibrated for a serial 2-pool SOC model using 4 different data constraints from the Howland Tower site. The multi-constraints setup allows to quantify the information content of individual data constraints for certain parameters.

### <sup>14</sup>C tells which processes are important Comission No Advection No Bioturbation

#### ° ° 0 10-20depth (cm) 30-40-50-SOC 60- $C_R$ CDOC 70-Ca C<sub>B</sub> 80-20 40 60 80 100 $C_{org}$ (kg m<sup>-3</sup>) conv. <sup>14</sup>C age (years BP) 2000 6000 4000 0-10-20-(cm) 40-40-50-60-70-80-40 60 80 100 120

<sup>14</sup>C (% Modern)







Ahrens B, Braakhekke M, Guggenberger G, Schrumpf M & Reichstein M (2015) SBB



### Isotopes to the rescue

Model complexity, equifinality, multiple datastreams

Model data integration, Bayes Factors

Examples of <sup>13</sup>C, <sup>14</sup>C, <sup>210</sup>Pb informing models

### Challenges with multiple data streams



### Inconsistent information given the model

#### Causes

- Bias in measurements or model drivers
- Scale / Abstraction in time and space
- Insufficient model

Problem:

- Violation of assumptions
- Unreasonable inversions



### Model inversion: Inferring uncertainty of model parameters



### Model discrepancy violates assumption of uncorrelated errors



Requires complex statistical and numerical treatment

- Alternate parameter blocks sampling
- Explicitly modelling discrepancy (Gaussian Processes)
- Temperated Cost

### **Example: Howland inversion**





unweighted

# Challenges with multiple datastreams



Inconsistent data streams -> model discrepancy

Violation of inversion assumptions

Need (subjective) weighting of data streams or sophisticated numerical statistics

### Discussion: <sup>13</sup>C and microbial processing



<sup>13</sup>C: mineral-assoc SOM is strongly processed



Averages across 12 Carbo-Europe sites

# Soil microbial activity increases soil carbon storage



# Does microbial activity enhance the stable pool?



### Nutrient recycling depends on microbivory



# How can we use isotopes to study microbial processing?

### <sup>13</sup>C and microbial processing

<sup>13</sup>C: mineral-assoc SOM is strongly processed

Soil microbial activity increases soil carbon storage and controls nutrient recycling

How can we use isotopes to study microbial processing?



### Outlook 1 Comisssion in the SUBSOM project



# Outlook 2a Future ecosystem model development at MPI-BGC: Quincy









<sup>13</sup>C of respiration constraining storage pools Phosphorous submodel (Lin Yu)





#### **Constraining plant/soil interaction**

- Coupling of COMISSION/SEAM to new vegetation model, including <sup>13</sup>C and <sup>15</sup>N tracer / fractionation processes
- Use tracer studies to evaluate simulated fate of C and N



Ecotron experiment with elevated CO<sub>2</sub> using a dual <sup>13</sup>C/<sup>15</sup>N labelling approach



#### Summary

What is a surprise ? => mental models

Soil model developments

Equifinality: Isotopes to the rescue

Challenges with multiple data streams

Discussion: <sup>13</sup>C to study microbial processing

