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Abstract. Most pathogens threatening to cause extinction of a host species are maintained
on one or more reservoir hosts, in addition to the species that is threatened by disease.
Further, most conventional host–pathogen theory assumes that transmission is related to host
density, and therefore a pathogen should become extinct before its sole host. Tasmanian devil
facial tumor disease is a recently emerged infectious cancer that has led to massive population
declines and grave concerns for the future persistence of this largest surviving marsupial
carnivore. Here we report the results of mark–recapture studies at six sites and use these data
to estimate epidemiological parameters critical to both accurately assessing the risk of
extinction from this disease and effectively managing this disease threat. Three sites were
monitored from before or close to the time of disease arrival, and at three others disease was
well established when trapping began, in one site for at least 10 years. We found no evidence
for sex-specific differences in disease prevalence and little evidence of consistent seasonal
variation in the force of infection. At all sites, the disease was maintained at high levels of
prevalence (.50% in 2–3-year-old animals), despite causing major population declines. We
also provide the first estimates of the basic reproductive rate R0 for this disease. Using a simple
age-structured deterministic model, we show that our results are not consistent with
transmission being proportional to the density of infected hosts but are consistent with
frequency-dependent transmission. This conclusion is further supported by the observation
that local disease prevalence in 2–3-year-olds still exceeds 50% at a site where population
density has been reduced by up to 90% in the past 12 years. These findings lend considerable
weight to concerns that this host-specific pathogen will cause the extinction of the Tasmanian
devil. Our study highlights the importance of rapidly implementing monitoring programs to
determine how transmission depends on host density and emphasizes the need for ongoing
management strategies involving a disease-free ‘‘insurance population,’’ along with ongoing
field monitoring programs to confirm whether local population extinction occurs.
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INTRODUCTION

Population decline caused by infectious disease is

increasingly being recognized as a major threat to the

survival of some species (McCallum and Dobson 1995,

Lafferty and Gerber 2002, de Castro and Bolker 2005,

Hoffmann et al. 2008). Recent examples of infectious

disease threatening the extinction of endangered species

include the Ebola virus affecting western gorillas (Leroy

et al. 2004), the fungus Batrachochytrium dendrobatidis

in numerous frog species worldwide (Berger et al. 1998,

Lips et al. 2006), rabies in Ethiopian wolves (Randall et

al. 2006) and African wild dogs (Vial et al. 2006), and

avian malaria and birdpox threatening Hawaiian land

birds (van Riper et al. 1986, 2002). In all these examples,

the pathogen in question has a broad host range,

including one or more reservoir species on which the

disease can be maintained at high prevalence, even as the

threatened species decline towards extinction.

The Tasmanian devil, Sarcophilus harrisii, the largest

surviving marsupial carnivore, has suffered massive

population declines as a result of Tasmanian devil facial

tumor disease (hereafter DFTD), a recently emerged

novel infectious cancer (Hawkins et al. 2006, McCallum

et al. 2007, Jones et al. 2008, McCallum 2008). First

reported in northeastern Tasmania in 1996, DFTD has

spread south and west over the majority of the

geographic range of the species, leading to a total

population decline of .60%, with declines in excess of

90% in the Northeast, where it has been present for the

longest time (Hawkins et al. 2006, McCallum et al.

2007). The disease is an infectious cancer, spread as a

transmissible cell line (Pearse and Swift 2006). This

unusual infection process is thought to be possible
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because of the extremely low genetic diversity of the

devil population, particularly in the Major Histocom-

patibility Complex (MHC), the vertebrate immune

system genes closely associated with self–nonself recog-

nition. All individuals examined by Siddle et al. (2007)

from the eastern part of the state possessed very similar

MHC genotypes, which were described as ‘‘functionally

identical.’’ The recent emergence of DFTD and its

intimate genetic relationship with Tasmanian devils

make it highly unlikely that there are alternate hosts,

and no evidence of the disease in any other species has

been observed (Hawkins et al. 2006, McCallum 2008).

Tasmanian devils bite each other frequently during

sexual encounters and interactions over food; adults are

most commonly bitten around the head region (Hamede

et al. 2008). It is highly likely that biting is the primary

means of tumor transmission, given that tumors are

almost invariably first observed on the head or face (Loh

et al. 2006, Pyecroft et al. 2007). However, transmission

through uninfected animals scavenging on the carcasses

of other devils that have died from the disease or

through infected and susceptible devils feeding on the

same prey carcass cannot be entirely discounted.

The incubation period of DFTD is currently un-

known. The infection process through transfer of viable

cancer cells suggests that transmission is unlikely to

occur before visible tumors around the face and mouth

are present. This implies that the latent period (the time

from acquisition of infection to infectiousness) is at least

as long as the incubation period (the time between

infection and first appearance of clinical signs). There is

one anecdotal record of an individual held in captivity

that first developed disease 10 months after its removal

from an infected population, and trapping records

(Tasmanian Department of Primary Industries and

Water [DPIW], unpublished manuscript; M. E. Jones,

unpublished data) suggest that tumors develop from

small nodules to large friable tumors over a period of 2–

3 months. Once a visible tumor is present, the disease is

typically fatal within 6 months (Hawkins et al. 2006).

Greatly reduced survival and population growth rates

in disease-affected populations indicate that population

declines could lead to local extinctions within 15 years of

disease arrival (Lachish et al. 2007). In addition, esti-

mates of disease spread indicate that DFTD will cover

the entirety of the devils’ range in as little as 5 years time

(McCallum et al. 2007). Extrapolation of these observed

trends has led to concerns that this novel disease may

lead to the extinction of Tasmanian devils in the wild in

the next 25 to 30 years (McCallum et al. 2007).

According to conventional host–pathogen theory,

however, a single-host pathogen should become extinct

before its sole host because transmission is usually

dependent on host density. Below a threshold density,

transmission is reduced sufficiently that the pathogen

cannot be maintained within the host population

(Anderson 1991). Only if pathogen transmission is

independent of host density can a single-host pathogen

in itself lead to the extinction of its host (de Castro and

Bolker 2005). Hence, to determine the risk of extinction
to the Tasmanian devil population from DFTD, we

require information on the relationship between trans-
mission and host population density.

A thorough understanding of the relationship be-
tween transmission and host density is also needed for

the effective management of infectious diseases. Eradi-
cation of any infectious disease from a population
requires reducing the effective reproductive number Re

to below one at very low disease prevalence. In almost
all situations, this requires driving the basic reproductive

number R0 (the mean number of secondary infections
per primary infection in a fully susceptible population)

to below one (Anderson and May 1991, Roberts 2007).
Thus, estimating R0 has been an essential component of

managing recent disease threats, whether to human
populations (for example, SARS [Anderson et al. 2004])

or to livestock (for example, foot and mouth disease
[Ferguson et al. 2001]). To evaluate the feasibility of

potential control strategies such as vaccination or
disease suppression by culling of infected animals, it is

critical to estimate R0 in field situations and to determine
how it might be affected by host density or population

size. Estimating R0 and understanding transmission
dynamics in wildlife present a range of challenges
beyond those in domestic animal or human populations.

All individuals cannot be counted or examined, and
contact tracing, as was done with SARS (Lipsitch et al.

2003), is essentially impossible. It is not surprising,
therefore, that few estimates of R0 in wildlife exist for

any disease of importance for conservation (Lloyd-
Smith et al. 2005, Real and Biek 2007).

In this paper, we use data derived from extensive
mark–recapture studies at a number of sites throughout

Tasmania to derive estimates of disease prevalence and
the basic reproductive number, and to investigate the

role of host density in disease transmission. This
information is combined with previously published

estimates of demographic parameters (Lachish et al.
2007, 2009) to develop simple deterministic SEI models

to evaluate the likelihood of this disease leading to the
extinction of the Tasmanian devil. By explicitly consid-

ering transmission dynamics, this approach provides a
more reliable prognosis of extinction than the extrapo-

lations of observed trends in McCallum et al. (2007) and
Lachish et al. (2007).

METHODS

Trapping and data collection

Tasmanian devils were trapped at six sites, shown on

Fig. 1. One site, Freycinet, was trapped from 1999
onward as part of a life history study by M. E. Jones and

students, with disease first detected in the area in 2001
(Lachish et al. 2007). A second site, Fentonbury, was

trapped from just prior to any evidence of disease
emergence. A third site, Wisedale, was first trapped in

2006, soon after local disease emergence: disease was
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known to be present south of the site (Hawkins et al.

2006), but had not been detected 8 km north of the site

in 2 years of trapping from 2004 (C. Hawkins and R.

Hamede, personal observations). At the three remaining

sites, Mt William, Bronte Park, and Buckland, disease

was well established at the time trapping commenced,

although a three-year mark–recapture study had been

undertaken at Mt William in the 1980s (Pemberton

1990), well before emergence of the disease. Disease has

been present at Mt William since at least 1996. High-

quality photographs of DFTD-like signs in devils at Mt

William were provided by Christo Baars in 1996

(Hawkins et al. 2006), and DFTD was confirmed in a

tumor sampled in 1997 near Waterhouse, 45 km from

Mt William (Loh et al. 2006; T. Knox, personal

communication). Devils with DFTD-like signs were

caught at Buckland in 1999 (M. E. Jones, unpublished

data), though the disease was not confirmed there until

2005. DFTD signs were first observed and confirmed at

Bronte in 2003, and our limited understanding of the

history of spread of the disease suggests that the disease

likely emerged there in 2001 or 2002 (McCallum et al.

2007).

Standardized trapping protocols were followed. At all

sites other than Freycinet, 10-night trapping sessions

were undertaken with 40–50 traps set over an area of

25–30 km2 (see Hawkins et al. 2006). Field work

scheduling meant that trapping frequency and timing

differed between sites and years: all were sampled

between two and four times per annum. At Freycinet,

consecutive 7-night trapping sessions were conducted

with 25–35 traps set over each of four 35–50 km2

sections comprising the entire 160-km2 peninsula (see

Lachish et al. 2007). Each section was trapped up to

four times per year.

All individuals trapped were individually tagged,

using microchip transponders (individual ear tattoos

were used prior to 2004 at Freycinet), weighed, sexed,

measured, assessed for disease status, and released at the

point of capture. Currently, DFTD can only definitively

be confirmed through histological examination of a

biopsied tumor. The likelihood of an individual having

DFTD was therefore scored on the basis of the external

morphology of any lumps or lesions found using an

index ranging from 1 (no lumps or lesions found),

through 2 and 3 (lumps or lesions unlikely to be DFTD),

to 4 and 5 (characteristic DFTD tumors present

[Hawkins et al. 2006]). Only individuals with lesions or

lumps characteristic of DFTD (those that scored 4 or 5)

were included as diseased in these analyses.

To examine seasonal trends, we grouped months into

summer (late November through February), approxi-

mately corresponding to the period in which juveniles

become independent and disperse; autumn (March

through May), during which mating and birth normally

occur; winter (June through August) during which

females have large pouch young; and spring (Septem-

ber through early November) when most young are in

the den.

Allocation into age classes

Breeding in Tasmanian devils is seasonal, with half of

births occurring in March (the Austral autumn) after a

short (3-week) gestation (Hesterman 2008). Pouch

vacation, which is functionally equivalent to birth in

placentals, occurs 15–16 weeks later (primarily in

August). As is typical of marsupials (Cockburn and

Johnson 1988), a large proportion of the year is devoted

to reproduction, with weaning in devils occurring the

following summer between December and February

(Hesterman 2008). For the purposes of allocating

animals into age classes, all births were assumed to

occur on the mean birth date of 20 March each year.

Animals were aged to their nearest year-class of birth

using molar eruption, tooth wear indices, and canine

over-eruption (distance from the dentine-enamel junc-

tion to the gum). This method is precise for aging devils

to 3 years of age (M. E. Jones, D. Sinn, N. Beeton et al.,

unpublished manuscript). Accordingly, all animals with

estimated ages of three or greater were pooled into a

single age category.

Statistical analysis

Mark–recapture data were analyzed using MARK

(Cooch and White 2002). Population size within the

7–10 day trapping trips at each site was estimated using

closed population estimates including heterogeneity in

capture probabilities with time and between individuals

(Chao et al. 1992) implemented in the program

CAPTURE (Otis et al. 1978, Rexstad and Burnham

FIG. 1. Map of Tasmania, indicating locations of study
sites. The approximate location of the disease front, as of early
2008, is shown with a dashed line (updated from Hawkins et al.
[2006] and McCallum et al. [2007]).
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1992). We also used results from these models to

investigate whether the recapture probability within

field trips was influenced by infection status. Population

size estimates, together with 95% confidence bounds,

were converted to estimates of density by dividing by the

area of a minimum convex polygon constructed around

the trapping grid, with an additional 2-km boundary

strip (Kenward 1985) (representing approximately half

the home range diameter of a Tasmanian devil [Pem-

berton 1990]), unless adjacent to a coastline, in which

case the strip was applied only to any land boundaries.

Prevalence data were analyzed using logistic models

implemented in R (version 2.6.1, R Development Core

Team 2007). Because the residual deviance in logistic

models suggested overdispersion, we used generalized

mixed models, implemented using the function lmer in R

package lme4, with the field trip–age class interaction as

a random error term. As predictor variables, we

explored age class (1–2, 2–3, 3þ years), season (austral

winter, spring, summer, autumn), and trend (years from

the first appearance of disease, or the start of the data

set, whichever was later). We fitted models using all

possible combinations of main effects and up to two-

way interactions. We also explored models with

aggregated versions of age class (1–2, 2þ) and season

(summer, other seasons), again with all possible

combinations of main effects and up to two-way

interactions. For each model, we calculated small

sample corrected Akaike Information Criteria (AICc)

and Akaike weights (see Burnham and Anderson 2004).

Estimation of R0

We approximated the basic reproductive number R0

from r0, the rate of increase in prevalence per unit time

following the first introduction of disease into the

population using Eq. 1 (Rþ0 in Roberts and Heesterbeek

2007)

R0 ¼ expðr0TÞ ð1Þ

where T is the mean generation time of the disease or

serial interval (i.e., the average time between acquisition

of infection and the infection being passed on to another

individual). This is the sum of the incubation period and

the time from the disease becoming detectable to first

transmission. In the absence of accurate information on

the latent period, other than the single anecdotal report

of 10 months, we explored a plausible range of

generation times of between 3 and 12 months. The

trend parameter, from logistic regression models of

prevalence following the first detection of disease at the

two sites (Freycinet and Fentonbury) that were trapped

from the time of first disease onset, provided an estimate

of r0.

Models of transmission dynamics

To investigate whether the observed changes in

disease prevalence and population density through time

were consistent with either frequency-dependent or

density-dependent disease transmission, we constructed

a simple deterministic SEI (Susceptible, Exposed,

Infectious) model with annual age classes, based on

devil life history parameters estimated in Lachish et al.

(2007). Transmission was parameterized to match the

initial increases in prevalence observed at Fentonbury in

this present study, and only animals older than one were

assumed susceptible (see Hawkins et al. 2006, Lachish et

al. 2007). In this simplified model, transitions through

age classes and from exposed to infectious classes are

assumed to occur at constant rates. The equations used

were as follows:

dS0

dt
¼

X

i

biNi

 !
ð1� NÞ � l0S0 � f ðI;NÞS0 � S1 ð2Þ

dSi

dt
¼ �liSi � f ðI;NÞSi þ Si�1 � Si for i . 0 ð3Þ

dEi

dt
¼ f ðI;NÞS0 � ðli þ dÞEi � Ei for i ¼ 0

f ðI;NÞS0 þ Ei�1 � ðli þ dÞEi � Ei for i . 0

�

ð4Þ

dIi

dt
¼ dEi � ðli þ aÞIi � Ii for i ¼ 0

dEi � ðli þ aÞIi þ Ii�1 � Ii for i . 0:

�
ð5Þ

Here, i represents age class (0, 1, 2, . . .). The variables Si,

Ei, Ii, and Ni represent susceptible, exposed, infectious,

and total numbers of devils of age i (all scaled relative to

the carrying capacity) with I and N representing totals

across age classes. The parameters are: bi, age-specific

birth rates; li, age-specific disease-independent mortality

rates; d, the rate of transition from exposed to infectious

age classes; and a, the increment in death rate caused by

symptomatic disease. Transmission is modeled by the

function f (I, N ), which is bI for density-dependent

transmission and bI/N for frequency-dependent trans-

mission.

RESULTS

Effects of DFTD infection on capture probability

There was no evidence that infection status had any

effect on capture probability within field trips. We

compared closed population models in which capture

probability was constant with models in which capture

probability varied between infected and uninfected

devils at Bronte (13 trapping sessions), Fentonbury (12

trapping sessions), and Freycinet (7 trapping sessions).

In none of these 32 sessions did AIC values indicate that

a model with separate capture probability for infected

and uninfected devils was preferred, and in each case the

95% confidence interval for the difference in capture

probability included 0. There were 13 sessions in which

the estimated capture probability was higher for healthy

animals and 19 in which the estimated capture

probability was higher for diseased animals (P ¼ 0.38

for H0 of equal capture probability, exact binomial test).
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We have therefore treated prevalence of disease in the

trapped population as an unbiased estimate of preva-

lence in the population as a whole.

Prevalence in males and females

There was no evidence of consistent differences in

disease prevalence between males and females. Table 1
shows results of adding a sex effect to logistic models

predicting prevalence from field trip (which encompasses

possible trend and season effects) and age class. At one
site (Bronte) the AICc weight of the model including sex

was slightly greater than that of the model without the

sex effect. At all other sites, the AICc weight of models
without a sex effect was substantially greater. Models

including an interaction between sex and field trip were

not supported at any site. At four of the six sites, the log-

odds of being infected were greater in males than in
females, with the reverse being the case at the other two

sites. Estimated odds ratios for the sex effect were small

at four of the six sites, with a marginally significant (P¼
0.04) female bias in infection at Bronte and a substantial

(but insignificant) point estimate of male bias in

infection at Mt William.

Increases in prevalence following disease invasion

Fig. 2A, D, G shows the prevalence of DFTD in all
animals older than 1 year captured at Freycinet. No

diseased animals ,1 year old were observed. Table 2

summarizes the results of generalized mixed models

based on these data. There are four models with similar
support, each including trend and an age effect on

prevalence. Three of these contrast 1–2-year-olds with

older animals. There is also some evidence that the rate
of increase in prevalence may differ between age classes,

with three of the four most strongly supported models

including an interaction between age and trend.
Evidence for a seasonal effect is weaker. Prevalence is

lower in 1–2-year-olds than in older animals (Fig. 2).

Fig. 2B, E, H shows the increase in prevalence of

DFTD since its arrival at Fentonbury. There is strong
support for models including both trend and contrasting

1–2-year-olds with older animals (see Table 2), as was

the case at Freycinet. However, there is also strong
support for a seasonal influence on prevalence, with all

the well-supported models including a term that

contrasts summer with the other three seasons. As with

Freycinet, the best-supported model suggested that the
rate of increase in prevalence differed with age.

Interpretation of the results at Wisedale was ham-

pered both by the short run of data (2 years) and also by

the fact that prevalence was at .30% in 3þ year-olds at
the time of the first survey (Fig. 2). Nevertheless, there is

strong support for an increase in prevalence through

time and of higher prevalence in adults (2 years þ)
compared with 1–2-year-olds. However, there was no
evidence of seasonality at this site (Table 2).

There was strong support for a model in which the

rate of increase in prevalence among 2–3-year-old

animals differed between the three sites, but weak
support for models including seasonality (Table 3).

Inspection of the parameter estimates and 95% posterior

density intervals for the best-supported model (Table 4)
suggests that prevalence increased more slowly at

Freycinet than at Fentonbury. (The interval for the

trend : Freycinet interaction does not include zero.)

Prevalence at sites where disease was established

The Bronte, Buckland, and Mt William sites each had
disease well established at the time of the first survey,

with estimated prevalence in excess of 50% in 2–3-year-

olds (Fig. 3). At Bronte and Buckland, there was no

evidence of a trend in prevalence with time (Table 5).
However, at Mt William, despite the fact that disease

had been present in this population for at least eight

years when surveys commenced, there was strong
support for an increase in prevalence with time. At

both Mt William and Bronte, there was strong support

for models in which prevalence differed between age
classes (either all three age classes or 1–2-year-olds vs.

older animals) and with season, with evidence of an

interaction between the two factors at Mt William. At
Buckland, which had the least data, the null model (no

effect of season, age class, or trend) was most strongly

supported.

Seasonality

Fig. 4 shows parameter estimates for the effect of

season (relative to summer) on prevalence in 1–2-year-old

TABLE 1. The influence of host sex on disease prevalence at six sites.

Site
AICc

(�sex)
AICc

(þsex)
AICc

weight (�sex)
AICc

weight (þsex)
M:F

log-odds ratio SE

Fentonbury 159.91 163.13 0.83 0.17 0.0591 0.326
Wisedale 107.77 111.12 0.84 0.16 0.117 0.413
Bronte 112.64 112.28 0.46 0.54 �0.835 0.409
Buckland 77.50 81.81 �0.71� 0.03 �0.118 0.487
Mt William 117.43 119.64 0.49� 0.16 0.580 0.427
Freycinet 236.49 238.80 0.76 0.24 0.242 0.253

Note: AICc and AICc weights for models including additive effects of field trip and age class,
with and without a sex effect, are shown, together with the estimated log-odds ratio (and standard
error) of being infected for males (M) relative to females (F).

� AICc weight for model with only age class is 0.25.
� AICc weight for model with only age class is 0.35.

December 2009 3383TRANSMISSION OF DEVIL FACIAL TUMOR



and 2–3-year-old devils, for all season–site combinations

in which the effects were estimable. Effects are corrected

for trend in those sites where it was well supported in the

previous analysis (Fentonbury, Wisedale, Freycinet, and

Mt William). Effects of season are strongly negative in

one-year-olds in autumn (immediately after their pre-

sumed birthday), but then appear to decrease in

magnitude through the year. There is no evidence of

consistent seasonality across sites in two-year-olds.

Impacts on devil population size

At all sites, except Buckland and Wisedale, the

estimated devil population size declined in the presence

of the disease (Fig. 5, Table 6). There was no evidence

that disease prevalence in adult devils declined with

population size, as would be expected if transmission

were density dependent.

Estimates of R0

Table 7 shows estimates of R0 based on the Freycinet

and Fentonbury models reported above. Estimates for

Freycinet are considerably lower than those at Fenton-

bury for the same serial interval. The extreme influence

of the generation time estimate on R0 is also evident.

Alternate models of disease transmission

Fig. 6 shows trajectories of devil density and DFTD

prevalence predicted from both density-dependent and

frequency-dependent transmission for a range of plau-

sible latent periods. With frequency-dependent trans-

FIG. 2. Prevalence of Tasmanian devil facial tumor disease (DFTD) at three sites: Freycinet (A, D, and G), Fentonbury (B, E,
and H), and Wisedale (C, F, and I), monitored from before or close to the onset of disease. (A–C) Tasmanian devils from 1–2 years
of age, (D–F) devils 2–3 years of age, (G–I) devils 3þ years of age. Error bars are 95% exact binomial confidence intervals, and the
dashed lines represent the best fit of a logistic regression model including age class and trend but without seasonal effects.

HAMISH MCCALLUM ET AL.3384 Ecology, Vol. 90, No. 12



mission, the model predicted the maintenance of high

prevalence levels in populations where devil density has

declined substantially after several years since disease

introduction, consistent with our field observations (Fig.

6). The model predicts devil decline to infinitesimal

levels, which would correspond to host extinction in any

finite population. The equilibrium prevalence is higher

for shorter latent periods. The same model formulated

with density-dependent transmission was unable to

generate high levels of DFTD prevalence with decreas-

ing population abundance, whatever the latent period,

and predicts maintenance of devil numbers at around

40% of the original carrying capacity, with oscillations

in host numbers damping more rapidly as the latent

period increases. As is predicted by simpler, nonstruc-

tured models (de Castro and Bolker 2005), the two

transmission modes thus produce very different out-

comes, with a stable equilibrium between host and

pathogen generated from density-dependent transmis-

sion, but with host extinction predicted from frequency-

dependent transmission.

DISCUSSION

Prevalence of DFTD is very high in 2–3-year-old

individuals at all sites, once disease has been present in

the area for several years. Given that the disease is

typically fatal within six months of the first appearance

of a visible tumor (Hawkins et al. 2006), infection levels

in excess of 50% in all 2–3-year-olds present at any given

time mean that the disease is having a devastating

impact on Tasmanian devil populations. This can be

seen from the ongoing population declines at almost all

sites when disease is present (see Fig. 5). The lack of

significant declines in population size following DFTD

introduction at Wisedale and Buckland is likely to be an

artifact of the short time-series available for these two

sites. Further analysis of trapping data from all sites

(Jones et al. 2008) shows a total change in the life history

of Tasmanian devils in diseased populations, with an

almost complete disappearance of animals older than

three years of age.

Particularly concerning is the lack of evidence of any

substantial decrease in prevalence in populations such as

Mt William, in which the disease has been established

for lengthy periods, despite the overall population size

being reduced by as much as 90% since 1996 (based on

estimates from spotlighting counts [McCallum et al.

2007]). Comparison of Figs. 2 and 3 suggests that

prevalence in 2–3-year-olds is at least 50% in popula-

tions where the disease is well established, but may reach

80% or more within four years of disease arrival.

However, prevalence in 1–2-year-old animals appears

to be greater in the populations where disease is

established than it is in the populations monitored early

after the arrival of the disease.

TABLE 2. Generalized mixed models of Tasmanian devil facial
tumor disease prevalence at three sites, where monitoring
commenced close to DFTD arrival.

Model terms
Param-
eters DAICc

Akaike
weight, wi

Freycinet (N ¼ 54)

Ad.juv 3 trend 5 0.00 0.196
Ad.juv þ trend 4 0.40 0.160
Age class 3 trend 7 0.49 0.153
Ad.juv 3 (trend þ season) 11 0.56 0.147
Ad.juv 3 trend þ summer 6 2.18 0.066
Age class þ trend 5 2.48 0.056
Age class 3 trend þ summer 8 2.48 0.056
Ad.juv þ trend þ summer 5 2.62 0.053

Fentonbury (N ¼ 42)

Ad.juv 3 trend þ summer 6 0.00 0.359
Ad.juv 3 summer þ trend 6 1.24 0.194
Ad.juv þ trend þ summer 5 1.61 0.161
Ad.juv 3 (trend þ summer) 7 1.89 0.140

Wisedale (N ¼ 24)

Ad.juv þ trend 4 0.00 0.479
Ad.juv 3 2.76 0.121
Ad.juv 3 trend 5 2.87 0.114

Notes: Age class represents three age classes, 1–2-year-olds,
2–3-year-olds, and 3þ year-olds; trend is time in years since
disease emergence at the site; season is the four Austral seasons;
ad.juv is age class contrasting 1–2-year-olds vs. older animals,
and ‘‘summer’’ contrasts summer with the remaining seasons. A
‘‘þ’’ represents additive effects, whereas a ‘‘3’’ also includes
interactions. Models for each site are shown in order of
increasing AICc (small-sample corrected Akaike Information
Criterion). All possible models including up to two-way
interactions were fitted, but only models with a difference in
AICc from the best model (DAICc) of ,3 are shown. The table
also presents the Akaike weight w of these plausible models
(calculated relative to all the models fitted for that site). This
can be considered as the weight of evidence in support of the
model or (loosely) as the probability that the model is the best
of those considered for the data (Burnham and Anderson
2004). Also shown is the number of parameters for each model
and the sample size N (trip–age class combinations) at each site.

TABLE 3. Generalized mixed models comparing increases in
prevalence with time in 2–3-year-old Tasmanian devils at
Freycinet, Fentonbury, and Wisedale.

Model terms Parameters DAICc wi

Site 3 trend 7 0.00 0.560
Site þ trend 5 2.07 0.199
Site 3 trend þ summer 8 3.01 0.124
Site 3 (summer þ trend) 10 4.44 0.061
Site þ trend þ summer 6 4.74 0.052

TABLE 4. Parameter estimates for the most strongly supported
model (site 3 trend) of the prevalence of Tasmanian devil
facial tumor disease in 2–3-year-old devils at three sites.

Parameter Estimate Lower Upper

Intercept �5.879 �8.720 �3.920
Freycinet 0.836 �2.156 3.904
Wisedale 3.057 �0.115 6.616
Trend 2.268 1.450 3.483
Freycinet : trend �1.254 �2.464 �0.301
Wisedale : trend �0.413 �2.411 1.692

Notes: Site effects are relative to Fentonbury. Lower and
upper 95% confidence bounds were derived from Highest
Posterior Density intervals from a Markov chain Monte Carlo
sample (n ¼ 50 000).
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The very high levels of prevalence reached and

maintained in 2–3-year-olds indicate that transmission

depends weakly, if at all, on host density, and shows no

evidence of any threshold population density below

which the disease cannot be maintained within the

Tasmanian devil population. Our simple age-structured

model suggests that the high levels of prevalence

maintained even after large population declines are

inconsistent with the hypothesis of density-dependent

disease transmission, but are more consistent with

transmission being dependent on the frequency of

infected hosts in the population. The predicted preva-

lence for frequency-dependent transmission if a 3-month

latent period is assumed is close to the observed

prevalence. However, the simplified way in which time

delays are modeled in Eqs. 2–5 limits the extent to which

the quantitative predictions of prevalence from the

model can be directly compared with those observed in

Figs. 2 and 3. In the absence of a threshold population

density for disease maintenance, it is theoretically

possible for a host-specific pathogen such as DFTD to

lead to host extinction (de Castro and Bolker 2005).

Substantial reductions in population size following

disease epidemics may cause density-dependent com-

FIG. 3. Prevalence of DFTD at three sites where monitoring began well after disease was established: Bronte (A, D, and G), Mt
William (B, E, and H), and Buckland (C, F, and I). (A–C) Tasmanian devils 1–2 years of age, (D–F) devils 2–3 years of age, (G–I)
devils 3þ years of age. Error bars are 95% exact binomial confidence intervals. The dashed lines in the Mt William panels represent
the best fit of a logistic regression model including age class and trend but without seasonal effects. As there was no evidence of a
trend at the other two sites, the dashed lines at the other two sites represent the mean prevalence in that age class across all sampling
intervals.
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pensatory changes in host population dynamics, medi-

ated via changes to the life history traits of individuals,

which can potentially mitigate the population decline

(Fowler 1981). In areas where DFTD has become

established, there is evidence of increased breeding in

females between one and two years of age. (Prior to the

disease the majority of female devils began breeding at

two years of age [Jones et al. 2008].) Widespread

precocial breeding in Tasmanian devils, however, is

precluded by physiological and ecological constraints

that limit the ability of one-year-olds to breed (Lachish

et al. 2009). Since no other compensatory responses to

population decline have been observed (Lachish et al.

2009), the observed reproductive compensation will be

unlikely to greatly alter a population’s trajectory once

disease is established. Further, the frequency-dependent

transmission described in this paper, together with the

observation that bite injuries are particularly prevalent

in the mating season (Hamede et al. 2008) suggest that

DFTD has some attributes of a sexually transmitted

disease. Precocial breeding might therefore be associated

with increased disease in young animals. (Compare Figs.

2 and 3 for DFTD prevalence in 1–2-year-olds.)

Transmission is the key process in the dynamics of an

infectious disease, but is invariably the most difficult

process to parameterize, particularly in an emerging

disease of wildlife. DFTD is no exception. In both of the

sites from which we have good data from the time of the

first appearance of the disease (or very soon thereafter),

the disease is initially at higher prevalence in older

animals than in younger animals. This would be

expected given that there appears to be a substantial

incubation period and that bite injuries occur more

frequently in adults than in subadults (Hamede et al.

2008). Increased prevalence in older age classes is

expected in most diseases that produce persistent

infections, simply because older animals have had more

time to become infected (Grenfell and Anderson 1985).

In the case of DFTD, however, infected animals are

removed from the population within ;6 months because

the disease is invariably lethal, meaning that the

TABLE 5. Generalized mixed models of Tasmanian Devil facial
tumor disease prevalence at three sites, at which disease was
well established when monitoring commenced.

Model terms Parameters DAICc wi

Mt William (N ¼ 44)

Ad.juv 3 season þ trend 8 0.00 0.346
Ad.juv 3 2.50 0.099
Ad.juv 3 (trend þ season) 9 2.67 0.091
Ad.juv 3 season 7 2.79 0.086

Bronte Park (N ¼ 25)

Age class þ season 7 0.00 0.228
Age class þ summer 5 0.84 0.150
Ad.juv þ summer 4 1.00 0.138
Age class þ summer þ trend 6 1.12 0.130
Ad.juv þ season 6 1.35 0.116
Ad.juv þ summer þ trend 5 1.99 0.084

Buckland (N ¼ 11)

Null 2 0.00 0.400
Ad.juv 3 1.48 0.191
Trend 3 1.50 0.189

Notes: As in Table 2, age class represents three age classes, 1–
2-year-olds, 2–3-year-olds, and 3þ year-olds; trend is time in
years since disease emergence at the site; season is the four
Austral seasons; ad.juv is age class contrasting 1–2-year-olds vs.
older animals, and ‘‘summer’’ contrasts summer with the
remaining seasons. A ‘‘þ’’ represents additive effects, whereas
a ‘‘3’’ also includes interactions. Models for each site are shown
in order of increasing AICc (small-sample corrected Akaike
Information Criterion). All possible models including up to
two-way interactions were fitted, but only models with a
difference in AICc from the best model (DAICc) of ,3 are
shown. At both Bronte Park and Buckland, the data were too
sparse for models including interactions with age class and
season or summer to be fitted. The table presents the Akaike
weight w of these plausible models (calculated relative to all the
models fitted for that site). Also shown is the number of
parameters for each model and N, the sample size (trip–age
class combinations) at each site.

FIG. 4. Estimates of effects of season (relative to summer)
on log-odds of infection, with standard errors. Bronte, up-
pointing triangles; Fentonbury, down-pointing triangles; Frey-
cinet, circles; Mt William, squares; Wisedale, diamonds.
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predicted relationship between age and prevalence is not

as straightforward.

While there is evidence of a seasonal pattern in

prevalence in one-year-olds at most sites (see Fig. 4), this

probably does not represent a seasonal pattern in

transmission. Devils are born over a 6-month period,

although half of births occur in March (Hesterman

2008). This means that ‘‘1–2-year-olds’’ sampled in

autumn have probably just passed their first birthday,

and have only been weaned for 3–4 months, whereas 1–

2-year-olds sampled in summer are nearly two. The

diminishing effect on prevalence of season relative to

summer in 1–2-year-olds in Fig. 4 is therefore most

likely simply a function of longer potential exposure of

FIG. 5. Estimates of population density (devils/km2, with 95% confidence intervals; black lines and solid symbols) of
Tasmanian devils at the six study sites. The prevalence of DFTD in adult animals (2 years and older; with exact binomial 95%
confidence intervals; gray lines and open symbols), is also shown, with scale numbers on the right axis of each panel. Note that data
from 2001 are included in the graph for Freycinet.
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those animals to infection. The lack of a similar pattern

in 2–3-year-olds suggests that a seasonal effect is not due

to a seasonal change in the force of infection. This is a

rather unexpected result. The most likely means of

disease transmission is through biting, and there is

evidence that, in adults, biting injuries are typically

around twice as common during the mating season

(March) as in other seasons (Hamede et al. 2008). An

increase in disease prevalence would therefore be

expected following a lag equal to the average incubation

period, particularly as infections progress from first

detection to death within six months. One explanation

for the lack of a seasonal peak in prevalence is that the

incubation period may be variable between individual

infections, depending on a range of factors, which might

include the number of infected cells transferred, the

location of the transfer, and the genotype and immuno-

logical status of the infected host. Another factor that

may act to distribute any seasonal peak in transmission

detectable through prevalence is that in this analysis,

early- and late-stage infections are not distinguished.

The estimates of R0 reported here differ substantially

between the two areas from which they were derived,

being significantly higher at Fentonbury than at

Freycinet (see Table 7). This is to be expected: R0 is

not an intrinsic property of a disease, but depends on

the environment in which the disease occurs, and also

may depend on population density. The estimated

population density at Fentonbury was indeed higher

than at Freycinet at the time of disease arrival (see Fig.

5). However, the very high prevalence in adult (2þyears)

devils maintained at all sites, despite major declines in

density, suggests that transmission depends weakly on

population density. A contributor to the higher rate of
increase in prevalence with time at Fentonbury com-

pared with Freycinet is likely to be the different physical

properties of the two study areas. Freycinet is an

extended linear site (;50 km from north to south), and

the disease entered the northern part of the study area

several years before it spread to the south. The increase

in prevalence at Freycinet therefore includes a compo-
nent of spatial spread through the study site, in addition

to increasing prevalence in individuals present at any

given location. In contrast, the Fentonbury study site is

smaller (;5 km across in any direction), and the

increase in the number of individuals infected at that

site does not contain a substantial element of spatial

spread.

The quantity that can be empirically measured from

our data is r0, which is the increase in prevalence per unit

of time, on a logarithmic scale. However, the parameter
of key epidemiological interest for management purpos-

es is R0, the basic reproductive rate, which is measured

on a per generation scale. Unfortunately, a complicating

factor in this case is that we do not have a good measure

of the generation time of the disease, which is the mean

time between an individual acquiring infection and

transmitting it to another (Svensson 2007). For a given

value of r0, R0 is greater for a longer generation time.
The lack of knowledge of the generation time is

responsible for the very large differences in the plausible

values for R0 shown in Table 7. If the lower estimates are

closer to the true value, then controlling the disease by

vaccination or by the removal of infected animals may

well be feasible. For example, developing a vaccine is a

potential management strategy (Woods et al. 2007). A

standard equation (Anderson and May 1991) for the
proportion of individuals p that must be vaccinated in

order to eliminate a disease from a population is

p ¼ 1� 1=R0: ð6Þ

TABLE 6. Trends in Tasmanian devil population density at six
sites when disease was present.

Site df b SE(b) P

Freycinet 10 �0.163 0.0266 0.0001
Fentonbury 9 �0.259 0.0487 0.0004
Wisedale 6 0.010 0.112 0.927
Mt William 7 �0.5511 0.1148 0.0020
Bronte 9 �0.3403 0.1089 0.012
Buckland 3 �0.0865 0.1515 0.608

Note: The trend parameter (b) is shown together with its
standard error and significance, derived from a regression of
ln(population density) vs. time in years, weighted by the
estimated density divided by the square of the width of the
confidence interval.

TABLE 7. (A) Estimates of r0 (the initial increase in prevalence per year), derived from generalized
mixed models of prevalence in 2–3-year-olds vs. time in years, and (B) estimates of R0 (the basic
reproduction number), derived from Eq. 1 for plausible values of the generation time of the
disease (T, in years).

Freycinet Fentonbury

Statistic 2.5% Estimate 97.5% 2.5% Estimate 97.5%

A) r0 0.6257 1.0055 1.2912 1.4663 2.2644 3.1208

B) R0

T ¼ 0.25 1.169 1.286 1.381 1.443 1.761 2.182
T ¼ 0.50 1.367 1.653 1.907 2.082 3.102 4.761
T ¼ 0.75 1.599 2.126 2.634 3.003 5.465 10.387
T ¼ 1.00 1.870 2.733 3.637 4.333 9.625 22.664

Note: The percentiles shown (2.5%, 97.5%) were derived from Highest Posterior Density
intervals for r0 from a Markov chain Monte Carlo sample (n ¼ 50 000 iterations).
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Given the mean estimated value for R0 at Freycinet and

a generation time of six months, this would suggest that

vaccination of only ;30% of the population would be

sufficient to eliminate the disease. Tasmanian devils are
relatively trappable: mark–recapture models from Frey-

cinet estimate the capture probability over a seven-day

field trip of an individual known to be present in the

population at 79% (Lachish et al. 2007). Even allowing

for the possibility that some proportion of the popula-

tion might be untrappable, this high recapture proba-
bility suggests that vaccination of 30% of the population

might be achievable even if a vaccine needed to be

delivered by injection. However, if the estimated value of

r0 at Fentonbury is closer to the typical value and the

generation time is one year, then in excess of 80% of the

population would need to be vaccinated, which would

be more difficult to achieve.

The possibility of controlling the disease by selective

culling of symptomatic infected animals is under active

experimental investigation (Jones et al. 2007). Whereas
vaccination aims to limit transmission by reducing the

susceptible host population, selective culling aims to

limit transmission by reducing the infected host popu-

lation. The proportion of infected hosts that must be

removed per unit of time to eliminate disease would not
have a simple form like Eq. 6, because culling, unlike

vaccination, will change overall host density. Neverthe-

less, this proportion will be a function of R0, as disease

elimination by whatever means requires driving R0 to

below 1.

FIG. 6. Solutions of a simple age-structured model of Tasmanian devil–DFTD dynamics, with frequency-dependent disease
transmission (A, C, and E) and density-dependent disease transmission (B, D, and F). In each, Tasmanian devil population density
through time, scaled relative to the disease-free equilibrium population (solid line) and disease prevalence in animals two years and
older (dashed line) are shown. Transmission for both density-dependent and frequency-dependent models was scaled so that the
initial increase in prevalence matched that at Fentonbury (2.26 yr�1) and the maximum rate of increase of the devil population,
rmax, was set at 0.3 yr�1. As the latent period is the most poorly known parameter, results for latent periods of (A, B) 3 months, (C,
D) 6 months, and (E, F) 9 months are shown. The mortality rates of susceptible and exposed devils are: 0.211, 0.144, 0.133, 0.146,
0.353 (all yr�1) for age classes 0–1, 1, 2, ..., 4–5, respectively. Those of infected devils are 0.951, 0.946, 0.946, 0.945, 0.956 yr�1,
which represents an additional age-independent mortality rate of 93.8% per year.
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Clearly, a priority for future research must be to

produce estimates of the incubation period for the

disease to enable more accurate estimation of R0.
However, this is not a straightforward exercise. Even

in human disease epidemics when the onset of each

individual case is known, estimating the serial interval is

a substantial statistical challenge (White and Pagano

2008). Limited evidence from a very small number of
laboratory transmission trials (Pyecroft et al. 2007)

suggests that the incubation period may depend strongly

on the mode of transmission. Experimentally duplicat-

ing contacts that are typical for devils interacting in the
field is not easy, although confining an infected devil

together with susceptible individuals for a short period

of time might be possible. Another approach would be

to bring animals without disease signs from a diseased

area into captivity and then to monitor the time taken
until clinical disease was observable. The longest periods

measured would produce an estimate of the incubation

period that was biased low, but would be an improve-

ment on the anecdotal information currently available.
A further possibility might be to measure tumor growth

through time in a number of individuals and then

attempt to extrapolate backwards to estimate the time of

first infection. This would assume that tumor growth
was monophasic.

Tasmanian devil facial tumor disease is, to our

knowledge, the first case of a host-specific disease

threatening to cause the extinction of its host. Detecting

the nature of the relationship between transmission and

host density is difficult in free-ranging populations
(Begon et al. 2003, Rachowicz and Briggs 2007, Davis

et al. 2008). The extensive field data analyzed in this

study strongly suggest that DFTD transmission cannot

be adequately represented by a simple density-dependent
model, and therefore that extinction of the Tasmanian

devil from this host-specific pathogen is a real possibil-

ity. This worrying prognosis for devil populations in the

absence of intervention is central to determining
appropriate management strategies and indicates the

need for substantial investment in establishing disease-

free insurance populations, so that disease-free animals

can be reintroduced following disease-induced extinc-

tion (Jones et al. 2007).

This case study emphasizes the importance of rapidly
implementing monitoring programs, should an emerging

pathogen be detected in any wildlife species. It is

principally from the sites monitored since the first

arrival of the disease that we have been able to estimate
parameters associated with disease transmission. This

information has been critical in determining the

prognosis for the species and in justifying the very

substantial investment that has been made by Australian
governments in its conservation.
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