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1 Introduction

An important application of mathematical models is to estimate biological parameters that
cannot be measured directly. The basic procedure is to construct a mathematical model that
captures the main processes of the biological system and then “fit the model” to real observations.
Model fitting works by contrasting observations (empirical data) to the predictions of the model,
and finding the set of model parameters for which the difference is the smallest. It is important
to keep in mind that parameter estimation depends strongly on the formulation of the model,
e.g. models based on alternative hypotheses may yield different estimates from the same data.
The “goodness of fit” can then guide our decision to accept or reject a model (and the biological
hypothesis behind it) or to choose from alternative hypotheses.

We will illustrate the procedure of parameter estimation on the example of the within-
host dynamics of HIV infection®. Infection with this virus is typically characterized by a long
asymptomatic period that lasts for several years (see Figure 1 for the typical course of the
infection). During this time, virus load (the level of the virus in an individual) remains relatively
stable, and the infection seems to be “latent”. However, the application of the first effective

2There are actually two types of the virus: HIV-1 and HIV-2. HIV-1 is responsible for the worldwide epidemic,
it has been studied much more intensively and it has originated from a virus of chimpanzees. HIV-2 is largely
confined to Africa and has originated from a related virus of sooty mangabeys.



antiviral drugs (introduced around 1995) has revealed a highly dynamic picture of this “latency”.
Within hours of the start of treatment, the virus load begins to fall rapidly: it falls typically
several orders of magnitude within 1-2 weeks. The drugs block the infection of new cells, but
do not affect the death of cells that are already infected or the breakdown of virus particles.
Therefore, the observed rapid decline reflects the normal decay of infected cells and virus, which
is, in the absence of treatment, balanced by equally fast production. The apparent stability of
the virus load without treatment thus reflects the almost perfect balance of fast production and
decay. The analysis of virus load data from the beginning of treatment allows us to estimate
just how fast these processes are.
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Figure 1: The typical course of HIV-1 infection in an untreated individual. After an individual
becomes infected, the virus load rises rapidly to a very high transient peak level, and then settles
to a so-called set-point level that remains more or less stable for several years. This initial phase
of primary infection lasts only a few months, and is also characterized by a substantial (though
partially transient) decrease in the the CD44 T cell population, which are the major target
cells of HIV and an essential part of the immune system. After primary infection the patient
enters the disease-free asymptomatic phase. During this stage the virus load remains stable
over prolonged periods of time, while the number of CD4 cells continues to decline steadily.
Eventually the CD4 cells fall below a critical level (<200 CD4 per ul of blood), which defines
the onset of AIDS, and below which the CD4 cells can no longer maintain a functional immune
response. At this stage AIDS-defining opportunistic infections typically arise and the virus load
may increase sharply.

1.1 Basic model of treatment

We first set up a model to describe the first few weeks of treatment. The model considers virus
particles, V', which disappear (break down or are neutralized) at a rate u, and are produced at
a rate k by the infected cells, I. Infected cells die at a rate a, and are produced by the infection
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Figure 2: Schematic illustration of the virus dynamics model given by Eqs 1 and 2.

of target cells, T', proportional to the level of virus and to an infectivity rate parameter, b. We
assume that the level of target cells does not change in the first few weeks of treatment, we can
thus write the following equations:

dIjdt = bTV —al (1)
av/dt = kI—uV (2)

A schematic illustration for this model is given in Figure 2. As the virus load is relatively
stable during the asymptomatic period, we can use the approximation dI/dt = 0 and dV/dt = 0.
From Eq. 1 we then obtain TV = al, i.e. the death of infected cells is balanced by the infection
of new target cells, and from Eq. 2 we obtain that the ratio of virus particles and infected cells
is I = uV/k at steady state. Antiviral treatment inhibits the infection of new target cells, which
can be modelled by setting the infectivity rate to b = 0. This reduces Eq. 1 to simple exponential
decay, and a solution for the whole system can be obtained analytically as
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with Iy = uVp/k. However, extensions of this model quickly become unsolvable analytically, we
will therefore use a simulation approach by numerically integrating the equations. To illustrate
the strengths and weaknesses of parameter estimation, let us first use this basic model to generate
a simulated data set for treatment, for which we know the “true values” of the parameters.
Egs. 1-2 have been implemented in the R script treat.R. Download the script from the web
page of the module and run it. Look at the decay of the virus level after the start of therapy.



The simulated data are also written into a file, which we will use in the following as input data
for the estimation procedure.

1.2 Parameter estimation

Parameter estimation (model fitting) is performed by finding the set of parameters for which
the prediction of the model is closest to the observations. This is done typically by minimizing
the sum of squared distances between the measured data and the values predicted by the model
(least squares method). Assume we have a set of n measurements my, ..., m, at times t1,...t,.
Assume further we have a model M which we want to fit to the data. In general the model will
depend on a number of parameters and the time. Then the estimation of the parameters is done
by minimizing the following function

M= = M(1))? (4)

This means that we are changing the model parameters to minimize the sum of the squared
distances between the measured data and the value predicted by the model. The best fit pa-
rameters are given by that combination of parameters for which M is minimal. If the model is
linear the best fit parameters can be obtained analytically by performing a linear regression. If
the model depends nonlinearly then it is more difficult to find the best fit parameters, and it can
no longer be guaranteed that the best fit parameters are actually obtained. However, standard
statistical software usually has sophisticated routines for fitting of nonlinear models, and R can
do this for us.

Let us approach the data that we generated by simulation as the scientists approached
the empirical data that were collected after the start of the first effective treatment. When
plot on a logarithmic scale, it is quite clear that the decline of the virus load follows some
sort of exponential decay. Let us first fit a simple exponential decay to the data, i.e. fit
the model: V(t) = Vpe~®. Download and run the R script estimate.R to do this. (Note
that the script uses a sampling of one data point per day from the simulated data). How
can you interpret the estimate obtained for the decay rate d (see footnoteP for hint)? The
script estimate.R uses the general nonlinear minimization function optimize(). However,
on a logarithmic scale, exponential decay behaves as a linear process. Modify the script to
minimize the sum of squared distances between the logarithm of the simulated and that of the
predicted data. Which estimation is better and why? Then try also linear regression on the log
transformed data set. Hint: you can fit a linear model with 1inearfit <- 1lm(log(datapoints)
~ timepoints) and then extract the intercept and the slope of the regression line with regcoef
<- coef (linearfit). Why does linear regression perform better? Try to vary the time points
used in the estimation, e.g. take time points from day 2 only.

®In a composite decay involving several processes of various rates, the rate of the overall decay is dominated
by the slowest of the processes. Look at Eq. 3 and try to explain why this is so.



2 Exercises

2.1

Ebl.

Eb2.

2.2

Eal.

Ea2.

Basic exercises

We have observed that fitting a simple exponential decay provides information on the
slower of the two decay rates. Now let us fit the model with distinct variables for infected
cells and virus (Eq. 3) to the simulated data. To do this, you will need to estimate a and u
simultaneously: to do this, you will need the function optim(), which can optimize several
parameters simultaneously (check out the help page of the function). Sample the data as in
the original paper by Perelson et al. (1996): take 5 points per day in the first two days, and
one point per day in the next five days. Use estimation based on both the raw data and on
log transformed data. Notice that the nonlinear minimization function requires an initial
guess for the parameters: experiment with providing different values. Note the symmetry
of the two decay rates: can model fitting tell you which rate characterizes infected cells
and which the virus particles? Vary the number and times of sampling of the data points
used in the estimation: how does it affect the precision of the estimates?

Calculate also the half-life of free virus and infected cells. The half-life describes the time
that an exponentially decaying population requires to fall to half its initial value. The
relation between the half-life and the (exponential) decay rate is thus given by ¢; J2 =
In(2)/a for the infected cell population and ¢,/ = In(2)/u for the free virus population.

Advanced/additional exercises

Download the original clinical data of patient 104 (see Perelson et al., 1996) from the web
page of the module. Perform the estimation procedure on the real data. Can you get
the same estimates as in the original paper? Check out the original paper, and try to
reproduce the result. Hint: check out the paper by Perelson et al. for the details of their
estimation process.

Real biological systems are always complex and the effect of the main processes is typically
blurred by a number of unknown or at least uncontrolled factors. Such confounding factors
add “noise” to any measurement. In this particular case, we can model this by adding
normally distributed additive or multiplicative noise to the simulated data. Hint: you
can generate normally distributed random numbers with the rnorm() function. Generate
additive noise by adding random numbers to the data points, and multiplicative noise by
multiplying the data points with the random numbers. Repeat the estimation procedure
on noisy data. Generate a large number of noisy data series and look at the distribution of
the values estimated for the parameters with simple and log transformed fitting. Plot the
distributions with the boxplot () command. Experiment with the estimation procedure:
how many points are required to get reliable estimates for the decay rates? When do you
have to measure the virus load to obtain reliable estimates for one or the other decay rate?
Given a certain estimation protocol, how many replicates do you need to get a reliable
estimation from the mean of the independent estimates? Conclude in the end: what ways
are there to improve parameter estimation?



Ea3.

Ea4.

Eab.

How is the estimation affected if the drugs are not 100% effective in blocking new infections?
Let € denote the efficacy of treatment, i.e. the fraction of reduction in the infectivity rate.
Rephrase Eq. 1 to accommodate this effect, then generate simulated data sets with this
model variant. Hint: in the setting of the initial value of bT", use the steady state equation:
bTV = al. Repeat the estimation procedure with the standard model (Eq. 3) on the
simulated data. How is the estimation affected? Advanced question: can you incorporate
<100% efficacy in the estimation, and estimate also efficacy from the data?

After the first few weeks of treatment, the decline of the virus load decelerates, which
can be explained by the presence of another, long-lived population of infected cells (see
Perelson et al., Nature 1997). Extend the model with an equation for such cells, generate
new data and repeat the estimation procedure. How is the estimation affected? Repeat the
estimation on the simulation of the first week, the first month, or the first year of simulated
treatment. Adopt the necessary data from the paper of Perelson et al.. Hint: considering
the longer time scale, the level of target cells should also be allowed to change. Introduce
an equation for the target cells with a constant rate of production: dT'/dt = A\— 6T —bTV.

Try to use the methods that you have learned to estimate the turnover of another virus:
HCV. See the papers on the module website for a starting point. Note that this is an
advanced exercise which needs additional background research and might not have a “final
solution”.



