
Network models of epidemics

Level 2 module in “Modelling course in population and evolutionary biology”

(701-1418-00)

Module author: Viktor Müller

Course director: Sebastian Bonhoeffer
Theoretical Biology

Institute of Integrative Biology
ETH Zürich

1 Introduction

The classical models of epidemics (as described in the module ‘SIR models of epidemics’) have
been constructed as sets of ordinary differential equations (ODEs), which implies several sim-
plifying assumptions: time and population sizes change on continuous scales, with all processes
occurring continuously and simultaneously; there is complete mixing within the classes or com-
partments of the models; and a given set of initial conditions always lead to exactly the same
outcome. Real biological systems tend to violate these assumptions: populations consist of
individuals and therefore population size can only change in discrete steps (on integer scale)
and at discrete events (birth, death, etc.); initial conditions can never be defined perfectly, and
unknown or uncontrolled variation results in the variability (stochasticity) of the outcome; and,
finally, not all individuals can interact with each other. More complex models can remedy each
of these shortcomings. Simple stochastic models (as in the module ‘Stochastic simulation of epi-
demics’) can deal with discrete scales (with respect to both time and population size), and can
generate a range of distinct outcomes by implementing stochastic (random) effects. However,
these models still regard all individuals as “equal” and interchangeable, implying that any two
individuals can interact with each other with the same probability. This is essentially never true
in real systems. Most interactions, and the transmission of most diseases, require proximity or at
least become weaker or less likely with increasing distance. In populations of mobile individuals
(e.g. humans) the patterns of proximity can best be traced by tracking the network of contacts

1



between the individuals. In this module, we will develop simulation models that do this. Such
models belong to the class of “individual-based models”, because they track each individual
separately, which allows the individuals to vary from each other, to form interactions according
to specific rules, and to accumulate a “history” over the course of a simulation that can affect
their subsequent behaviour. This is the most detailed and flexible of all modelling frameworks.

Below we will go through the basics of network theory, then link it to the study of epidemic
spreading. Before going into that, however, let me address a general problem of modelling.
If individual-based modelling is so much more powerful than other methods, then why bother
with simple models at all? The answer is two-fold. First, for the sake of economy. Simpler
models are easier and faster to construct and use less resources (e.g. computer time). Second,
simpler models can actually be more powerful than their complex counterparts in one important
respect: they are easier to understand and analyze. For ODE models, we can typically derive
the complete range of possible behaviours and easily assess the effect of individual factors. In
individual-based models this is a far more demanding task and it is often even difficult to decide
whether we have actually accomplished it. Therefore, as a rule of thumb, the optimal modelling
strategy is to use the minimum level of complexity required to yield appropriate answers to our
questions. However, the limitations of the simpler models can only be defined by testing more
complex models, as well. A major motivation for using complex models is to assess when and
how complexity affects the behaviour of the models. In this module, we will investigate when
and how network structure affects the behaviour of epidemics.

1.1 Network theory

Network theory is based on the application of graphs to real-world phenomena. A graph is an
abstract representation of a set of objects where some pairs of the objects are connected by links.
In graph theory, the objects can be called nodes or vertices, and the links can also be called
edges. In epidemiology, you can simply refer to individuals and their contacts. Here we will
mostly deal with simple undirected graphs: Figure 1 shows such an example. Nodes/individuals
are labelled with numbers and the lines between them indicate (mutual/symmetrical) contacts.
There is a path between two nodes if one can be reached from the other by traversing through
a series of adjoining links. In the example, the shortest path between Nodes 3 and 4 has length
3 and is highlighted in red. This graph consists of two connected components: all nodes of a
connected component (e.g. Nodes 1, 5, 2) can be reached from any other node of the component;
however, there are no links between the two components. The degree of a node in an undirected
graph is the number of links connecting to it, e.g. Node 1 has degree 2, and Node 9 has degree
3 in the example.

There are a number of ways to define and store a graph in R (or elsewhere). Two of the
most straightforward methods are the adjacency matrix and the listing of all edges. For a graph
with n nodes, the adjacency matrix is a square matrix with dimension n× n such that Ai,j = 1
if nodes i and j are connected, and zero if they are not. For undirected graphs Ai,j = Aj,i and
therefore the matrix is redundant and symmetric. Figure 1B shows the adjacency matrix for
our example.

2



1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 1 0 1
4 0 0 0 0 0 0 0 1 0
5 1 0 0 0 0 0 0 0 0
6 0 0 1 0 0 0 0 0 1
7 0 0 1 0 0 0 0 0 0
8 0 0 0 1 0 0 0 0 1
9 0 0 1 0 0 1 0 1 0

1

3

9

4

2

6

8

5 7

A B

Figure 1: A: a simple undirected graph with 9 nodes and 8 edges that constitute two connected
components. The shortest path between nodes 3 and 4 is highlighted in red. Note that there
can be multiple paths between a pair of nodes. B: the adjacency matrix of the graph.

In real networks most nodes tend to be connected only to a small minority of all nodes,
which results in ‘sparse’ adjacency matrices that are filled mostly with zeros. A simple way to
compact the definition of such graphs (and speed up the handling of connections) is to give
a listing of the edges (also called an incidence list) instead. For many purposes, this is best
implemented by an m × 2 matrix, in which each row defines a pair of nodes connected by an
edge and m is the number of edges. The graph in our example can thus also be defined as:

1 2

1 5

3 6

3 7

3 9

4 8

6 9

8 9

Instead of a 9 × 9 matrixa we ended up with a 8 × 2 matrix containing the same amount
of information. Gains in storage can be even greater with larger sparse networks. On the other

aThis matrix actually has only 36 informative elements - why is that?

3



hand, the generation of new links is sometimes easier using an adjacency matrix, and all links of
a single node are immediately accessible as a row (or column) of an adjacency matrix, but need
to be searched for in an incidence list. Which of the two structures is more efficient depends on
the particular network we study and on what we intend to do with it.

Look at the script netstart.r. It contains two simple functions to generate two types of
random networks. One is an Erdős-Rényi (ER) random graph, in which all pairs of nodes have
the same probability to be connected by a link: this type of network is most easily generated by
an adjacency matrix. The other example is a Barabási graph, which is built up by starting with
a single node, then adding one node at a time. Whenever a new node is added, it is connected to
some of the old nodes randomly, and the probability of the old nodes to receive one of the new
links increases with their degree (i.e. with the number of links they already have). This results
in those nodes with more links receiving even more, and as the graph grows, the distribution of
node degrees approaches a power-law distribution of the form P (k) ∼ k−γ , where P (k) is the
probability that a node is connected to k other nodes in the network and γ is the exponent of the
distribution. Such networks are also called scale-freeb and they tend to have a long “tail” at high
values of k, i.e. highly connected nodesc are more frequent than would be expected in simple
random networks. Human contact networks tend to be scale-free. Look at the degree distribution
of both types of networks implemented in the starting script. Generate large networks of both
types with about the same number of nodes and links and compare their distributions. Try to
fit a power-law function to the Barabási graphs you generate. Hint: power-law distributions are
linear on a log-log scale; for linear regression between two vectors (y against x), you can use the
function lm(y∼x). You can view summary of the fit with summary(lm(y∼x)) and you can plot
the regression line to your log-log plot of the distribution with abline(coef(lm(y∼x))).

The degree distribution of an Erdős-Rényi network follows a Poisson distribution. Can
you guess the parameter of the distribution? Generate a large Erdős-Rényi graph (with, e.g.,
1000 nodes), and try to find the Poisson distribution that fits to the degree distribution of
this network. Use the dpois function to generate the density function of the appropriately
parameterized Poisson distribution, and then plot it over the observed degree distribution of
the actual Erdős-Rényi network. Finally, generate a large Barabási graph and an Erdős-Rényi
graph with the same number of nodes and approximately the same number of edges. Compare
the degree distributions of the two graphs. (If you want to generate even larger graphs, see
exercise Eb2. below).

1.2 Linking epidemics to networks

To simulate epidemics over a network of contacts, we need to keep track of the infection status of
all individuals. This is done most easily by defining a vector for the infection status, in which the
ith element describes whether the ith invidividual/node of the network is infected (in the simplest
case, with just a logical value TRUE/FALSE). For infectious diseases that induce immunity, the
typical classification of infection status includes three possible states: S=susceptible (uninfected

bThis expression is sometimes reserved for networks with γ < 3.
cThe nodes with most connections are called hubs in scale-free networks. In the context of epidemics, such

individuals can be superspreaders.

4



individuals with no immunity), I=infectious and R=recovered (individuals who are no longer
infectious, but retain immunity to re-infection). This is exactly the same classification as is
used in the classic continuous SIR model of epidemicsd. However, simple SIR models only
keep track of the total population sizes of each category, which implies that individuals are
interchangeable and all individuals can transmit the disease to any other individual. In network
models of epidemics, disease can only spread between individuals who are linked to each other
in the network. The starting script includes the implementation of an epidemic over a simple
network, with just uninfected and infected/infectious individuals. Run the model: experiment
with different network and transmission parameters. Extend the model with immunity, i.e.
implement a recovered state of the infection status.

2 Exercises

In general I suggest to work with your own implementation of the network(s), because that gives
you complete freedom and flexibility. However, igraph tools can provide powerful help in the
analysis and visualization of the graphs that you have created (all you need to do is convert
your graphs into igraph type). You can also use the more complex network constructors of the
package (e.g. grg.game()) and then convert the generated graphs into a format that you can
handle in your simulations.

It is also possible to work entirely with igraph, in which case infection status and other
attributes can be stored as vertex attributes. See the entry on iterators in the igraph manual.
However, this is recommended for advanced programmers only: otherwise, it is very instructive
to build your own implementation of the various networks.

Finally, note that the stochasticity of this modelling framework (the formation and dynamics
of links and disease transmission involve stochastic processes) implies that each simulation run
will be different. Therefore, to draw conclusions about your network, you will need to run
multiple simulations with the same settings, and look at the distribution of outcomes (for which
the hist() function can often be helpful).

2.1 Basic exercises

Eb1. Write functions that convert an adjacency matrix to an incidence list, and vice versa.

Eb2. The function that generates Erdős-Rényi graphs in the starting script has limitations on
the size of the networks it can generate (the adjacency matrices get huge and will not fit
into memory). Write a function that can construct large ER networks by generating an
edge list.

Eb3. Write functions to generate the following types of networks. A simple Watts & Strogatz
network, which is created by aligning the nodes to form a “circle”, with each node con-
nected to its two neighbours, and then adding a few random links that establish long-range

dYou are advised to read the Introduction of the reader to the module ‘SIR models of epidemics’.

5



connections. This is the simplest example for a “small-world” network. Optionally, you
might generate networks in which the nodes are arranged at the grid points of a square
lattice, with each node connected to its four neighbours and again some random long-range
connections. Finally, write a function that generates a number of subpopulations, such
that most of the links are within subpopulations and a few links establish connections
between subpopulations. These networks provide examples for clustered graphs.

Eb4. In the epidemic model provided in the starting script, implement recovery of infected
individuals to immune/recovered status (an SIR model). Run multiple simulations with
fixed sets of parameters: observe the variability of the outcome. Plot a histogram of
epidemic size (total number infecteds over the whole epidemic), and interpret the result.
To better visualize the spread of the epidemic over the network, plot newly infected nodes
and recovered nodes with two new colours, and plot the links that transmitted the infection
in the last time step also in colour.

Eb5. Look at the effect of network structure on epidemic spreading. Compare network types
by selecting parameters such that the average degree of the nodes would be the same in
each network. In addition, test two types of reference with random mixing (no network
structure). First, ignore links, select pairs of nodes that interact randomly in each time
step. Second, run the continuous SIR model (see Level 1 module) with parameters matched
according to the network model(s) that you are using for comparison. Is it possible to
match the parameters between the continuous and the network model? Compare the
initial spread of the infection, and the total number of infecteds (with recovery in all
cases). Test also the effect of varying connectivity within each type. (Hint: the difference
between network types might depend on the parameters, e.g. connectivity, transmission
rate, etc.).

2.2 Advanced/additional exercises

Ea1. So far, we have worked with fixed networks. However, real contact networks are dynamic:
links can break up, new links can form, individuals can leave and enter the network.
Implement such processes in your network(s). Try to structure and parameterize the
processes such that they create or maintain a given type of network (e.g. an ER or
a Barabási graph). Look at the changes over time in network properties (e.g. degree
distribution, average degree etc.).

Ea2. Implement a heterosexual network for the modelling of a sexually transmitted disease
(STD). Note that such a network constitutes a bipartite graph, which has two classes of
nodes (males and females in this case) that can form links only with nodes of the other class.
Compare the spread of an infection over a heterosexual network and over a homogeneous
network with only one kind of individual.

Ea3. Devise optimal strategies of “targeted intervention” for various network types. E.g. if you
have capacity to treat or vaccinate only 10% of the population, how should you choose
that 10%? (For simplicity, assume that you have full knowledge of the network structure).
Hint: check out betweenness() and other centrality functions in igraph.

6



Ea4. Scale-free networks tend to have a densely connected “core”, including and linking the
nodes with the highest degrees (the hubs of the network). Generate Barabási networks
and try to find this connected core. You can develop your own methods, and you
can also experiment with the algorithms implemented in igraph for this purpose, e.g.
graph.coreness(), leading.eigenvector.community() or walktrap.community().

Ea5. So far, the only information you have stored about individuals was their infection status.
However, in such an individual-based framework, you can easily expand this with further
information, as is needed by your particular research problem. In this exercise, consider
the evolution of virulence in a network model. Virulence is defined as the harm an infec-
tion/pathogen causes to its host, e.g. in terms of an increased rate of death. To model its
evolution, you need to implement variability and heritability of this trait. How can you
do that? Furthermore, you need to define its effect, e.g. infected hosts (nodes) might die
at each time step with a probability that depends on the virulence of their infection. To
track evolution in the long term, you need also to add new susceptible individuals to allow
for prolonged epidemics. First, implement virulence as an independent trait and observe
its evolution: where is it converging to? Then, implement a trade-off e between virulence
and transmissibility of an infection, i.e. define one of these traits an a decreasing function
of the other. Where is virulence converging to now? How does it depend on the trade-off
you have specified? You can also experiment with further variants: e.g. virulence could
influence both the strength or the longevity of immunity induced in the host, and could
also influence the ability of the pathogen to infect hosts with a given strength of immunity.

eTrade-off is a central concept in evolutionary optimization: it implies that one characteristic can only be
improved at the expense of another.

7


