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1 Introduction

The title of this module is in fact the title of an influential book that Robert M. May® wrote
in the 1970’s®. In this book May addressed the relationship between community structure
in ecosystems and their properties of stability. At the time considerable evidence had been
accumulated to suggest that in nature structurally complex communities tend to be more stable
towards perturbations than simple ones. These observations led to an almost dogmatic view
that stability results from the complexity of natural ecosystems. May challenged this view
in the 1970’s® by showing mathematically that in model ecosystems stability decreases with
the number of species in a community and can therefore not be regarded as a straightforward
consequence of complexity. To derive this result May investigated the stability properties of

#Robert M. May (now Lord May of Oxford) has had an outstanding impact on theoretical ecology. He has
made seminal contributions to many areas such as chaos in biology (see also the module on the logistic difference
equation), theoretical epidemiology (see modules on infectious diseases), and to stability of ecosystems (this
module). Being a native of Australia, Robert May was first a theoretical physicist. Becoming the successor
to Robert McArthur as a theoretical ecologist at Princeton University, Robert May moved on later to Oxford
University. As one of very few scientist Robert May was made a Lord by the British Queen in 2001. Robert May
has also received an honorary doctorate from the ETH Zurich.

PR.M. May, “Stability and complexity in model ecosystems”, 2nd ed, Princeton University Press, 1974

“In addition to the book mentioned above, May published an article in Nature in 1972 entitled “Will a large
complex system be stable?”.



randomly assembled interacting species by means of eigenvalue analysis of random interaction
matrices. Specifically he showed that the likelihood that an ecosystem is stable decreased with
the fraction of interactions between species that are realized (connectivity) and the strength of
these interactions.

May’s work opened the door towards a more formal investigation of the relationship between
ecosystem structure and stability. However, May’s approach also has some limitations. May
studied randomly assembled communities, while real communities are likely not random, and
neither are species extinctions: clearly, rare species are more likely to become extinct than
abundant ones. Until today the relationship between community structure and stability remains
one of the major unresolved questions in ecology.

2 Multi-species Lotka-Volterra models

In this module we do not follow May’s original approach, but instead will numerically simulate
multi-species Lotka-Volterra models to investigate how ecosystem stability is related to size.
The Lotka-Volterra model (LVM) for two species? is defined by

dni/dt = ri[l — (n1+ y2n2)/Ki]n (1)
dng/dt = 13[1 — (n2 + y21m1)/Ka]no (2)

where n1 and no are the densities of populations 1 and 2. The interpretation of the parameters
r1,2 and K 2 are equivalent to the logistic differential equation, i.e. 712 are the maximal growth
rates and Ko are the carrying capacities for the respective species. The interpretation of
parameters 712 and 721 becomes clear from inspecting the above equations. They describe the
effects of competition between the two populations. If 1o > 1, this implies that the negative
effect of species 2 on species 1 is stronger than the negative effect of species 1 on itself. Hence,
in this case for species 1 intraspecific competition is weaker than interspecific competition.
Conversely, if v12 < 1 then intraspecific competition is stronger than interspecific competition
for species 1.

The multispecies LVM for N species is given by
N
dni/dt:ri(l—Zaijnj)ni fori=1,...,N (3)
j=1

The parameters r; describe the maximal growth rates; the interactions between species are
defined by the parameters a;;, which describe the effect of species j on species i. If a;; > 0
then the species j inhibits the growth of species i. The individual carrying capacity of each
species is now determined by the coefficient of its own self-limitation (a;;), such that K; = 1/a;.
Furthermore, if a;; > a;; then the effect of species j on 7 is stronger that the effect of species 7
on itself. If all a;; > 0 then the multispecies LVM describes a community with only competitive
interactions (i.e. without predator-prey relations between species). Predator-prey relations are

dSee also the script of S. Bonhoeffer’s lecture “Ecology and Evolution IT: Populations” on the main course web
page.



characterized by interactions where a;; < 0 and a;; > 0. (Here species i is a predator of species
j). Note, however, that for reasons of simplicity we will focus only on competitive interactions.
(One of the advanced topics suggested below is to extend the approach to include predator-prey
type interactions.)

2.1 Numerical integration of the multi-species LVM in R

The accompanying starting R script provides an implementation for the numerical solution of
the multi-species LVM. Please consult this script in parallel to reading this section. The R
script is commented extensively. The numerical simulation of the multi-species LVM can be
programmed in a few lines in R (if you know how!). Essentially what you need is a function
that defines the derivative of the LVM (i.e. the right hand side of equation 3). This function
looks like this:

#H#H#

# lvm(t,x,parms)

# Use: Function to calculate derivative of multispecies Lotka-Volterra equations
# Input:

# t: time (not used here, because there is no explicit time dependence)

# x: vector containing current abundance of all species

# parms: dummy variable, which is not used here (normally used to pass on

# parameter values, but not needed here because a and r are defined globally)

# Output:

# dx: derivative of Lotka-Volterra equations at point x

lvm <- function(t,x,parms){
dx <- r*(1 - a %*% x) * x
list(dx)

Here, dx,r and x are vectors (whose length corresponds to the number of species) and a is
an N x N matrix (where N is the number of species). The symbol % * % denotes matrix
multiplication in R. (Note that x and dz correspond to n and dn/dt in eq. 3.) The command
list at the end of the function just returns the values of dz.

The numerical integration of the multi-species LVM can then be done using the function
Isoda from the R library deSolve. A function to integrate a model such as the lvm looks for
example like this:

###

# n.integrate(time,init.x,model)

# Use: Numerical integration of model

# Input:

# t: list with elements time$start, time$end, and time$steps, giving start and



endpoint of integration and the number of time points in between
init.x: vector containing initial values (at time = time$start) of all species
model: mname of the function to integrate (here lvm)
Output:

x is evaluated. The next n columns are the values of the n species at these
time points
Description:
Generates a vector of time points for the integration and uses function lsoda
(from library deSolve) to integrate the model
.integrate <- function(time=time,init.x= init.x,model=model){
t.out <- seq(time$start,time$end,length=time$steps)
as.data.frame(lsoda(init.x,t.out,model,parms=parms))

B # # # # # H HF H H H

In the function we first generate a vector of times t.out between time$start and time$end
of length time$steps. Then we call the function 1soda, which requires initial values for the
species vector x. These are specified by the vector init.x. The variable model stands for the
model to integrate, which is here the function 1vm. The command as.data.frame returns the
output of Isoda as an R dataframe.

If we have specified all the relevant parameters and initial values then the LVM can be
integrated by executing the following steps in R. First load the library deSolve by executing
library(deSolve) on the R command line. This only needs to be done once at the beginning
of an R session and it requires that the library deSolve is installed on your computer. Next you
call n.integrate(time=time,init.x=init.x,model=1vm), where time is for example defined
as time<- list(start=0,end=30,steps=100). Note, however, that you can only run the model
provided you have specified all relevant parameters and initial values, such as the interaction
matrix a, the growth rates r, the initial values for all species init.zx, etc.

2.2 Generate and initialize parameter values

The initialization of all parameters is in principle straightforward. For example you could execute
the following commands in R:

# Number of Species

n<-10

# Generate n uniformly distributed random values (between O and 1) for the

# growth rate vector

r <- runif(n)

# Generate n uniformly distributed random values for initial values of species
init.x <- runif(n)

# Generate n x n uniformly distributed random values for interaction matrix

a <- matrix(runif(n*n),nrow=n)

data frame with n+1 columns. The first column contains the time points at which



# Integration window

time<- list(start=0,end=30,steps=100)

# dummy variable for lvm() function defined above

parms <- c(0) ### dummy variable (can have any numerical value)

Note that the dummy variable parms is required for the integration routine, but is of no further
importance.

Once you have specified these initial values you can numerically integrate the LVM by
calling n.integrate(time=time,init.x=init.x,model=1vm). The output is a dataframe with
the columns “time”, for the time points, and “1”, “2”, ... for the abundances of the species at
these time points. The start and end time and the time intervals in between are specified by
the parameter vector time.

2.3 Notes on generating the interaction matrix

There are several points that one needs to consider when generating the interaction matrix a;;:

e The values a;; have to be greater than zero, because otherwise a species might grow to
infinity. Therefore, when generating the values for the interaction matrix one has to take
care that the diagonal elements of the matrix (i.e. the a;;) are greater than zero.

e When the interaction matrix a;; is generated by drawing N x N uniformly distributed
random numbers then essentially all species interact with all others (since the probability
of generating a value of 0 vanishes). However, in natural ecosystems there will be many
species that do not interact and therefore should have interaction parameters with value
0.

2.4 Tools to plot the output of the simulation

The R script offers several functions to plot the generated output.

e plot.lvm.time: This function uses the output of the function n.integrate to plot the
time course of a simulation of the LVM.

e plot.matrix: This function plots the interaction matrix.

e plot.frequency: This function uses the output of the function n.integrate to plot the
frequencies of all species at the end of the simulation.

Examples for plots generated by these functions are given in figure 1. To understand how these
functions work in detail, please refer to the R script file.
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Figure 1: Plots generated by the plotting functions plot.lvm.time (top), plot.matrix (middle)
and plot.frequency (bottom).



2.5 Repeated simulations

The R script also offers the possibility to study the invasion of new species. In essence this
is done by repeatedly running the LVM model, testing which species have gone extinct (i.e.
have fallen in frequency below a pre-defined cutoff level), and replacing these extinct species by
new ones that are allowed to invade into the ecosystem (see example loop in the R script). In
order to replace the extinct species with new ones one needs to update the interaction matrix,
the growth rate vector, and the init.x vector, for the initial values of the species at the start
of the integration. The function cutoff can be used to determine which species went extinct
and which survived at the end of a simulation. The function cutoff returns a vector with the
indices of the extinct species. This vector is used by the function generate.parameters to
update the growth rate vector and the interaction matrix. The function generate.parameters
has another input parameter called sparse, which determines the fraction of all interactions
that are nonzero. This parameter can take any value between 0 and 1. A value of sparse of
1 implies full connectivity. The function generate.parameters also makes sure that there are
no 0 entries in the diagonal of the interaction matrix (i.e. all species inhibit their own growth).
For details please refer to the R script.

3 Exercises

3.1 Basic exercises

Ebl. How does ecosystem stability depend on size (i.e. the number of species present)? Hint:
Start with a random N x N matrix, simulate the LVM and count how many species are
present at the end of a (sufficiently long) simulation. Plot the number of surviving species
against N.

Eb2. How does ecosystem stability depend on connectivity (i.e. the fraction of non-zero entries
in the interaction matrix)?

Eb3. How can one define or measure ecosystem stability? Stability with regard to what? Think
about measures that would be useful for natural systems. (This exercise is not primarily
for simulation, but for discussion in order to think beyond the simulation.)

Eb4. Does the coexistence of a set of species depend on the order in which they are introduced
into an ecosystem? Hint: Start with a given interaction matrix, but introduce species in
different orders.

3.2 Advanced/additional exercises

Eal. How does an ecosystem respond to the removal of a species? What is the average effect and
what is the range of effects? Does the removal of an abundant species from the ecosystem
have a stronger effect than the removal of a rare one? Does the removal of a species with
high connectivity have a stronger effect than the removal of one with low connectivity?



Ea2.

Ea3.

Ead.

Eab.

How does an ecosystem respond to the invasion of a new species? Does invasion of a new
species lead to the extinction of another species? How does the effect of invasion depend
on the size of the ecosystem? How does it depend on the connectivity of the invading
species and the connectivity among the other species?

What is more important for the survival of a species: its growth rate, its carrying capacity
(self-limitation coefficient), the impact it has on other species, or how strongly itself is
affected by the other species?

Can “evolved” ecosystems be more complex than random ones? Hint: Start with random
interaction matrix and simulate the LVM until no further species goes extinct. Then
simulate repeated rounds of invasion of new (randomly parameterized) species, keeping the
new steady state (of surviving species) after each round. Can the number of co-existing
species increase? (The system might gain, but also lose species in each round).

How does the behavior of the system change if some interactions are predatory? Is the effect
of diversity and/or connectivity different? You may allow for predator/prey interactions
randomly in the matrix; alternatively, you may have a set of competing producer species
and one or more trophic levels of predators. Does such a structure make a difference?



