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1 About stochastic models

Many biological processes have an element of uncertainty to them. For example, humans re-
produce some time between 15 and 40 years, but the exact time of reproduction for a given
individual cannot be predicted. It is possible to incorporate this randomness or stochasticity in
the mathematical formalism. This module deals with the simulation and analysis of stochastic
models in the context of epidemics.

The way to incorporate randomness into a mathematical model is to formulate the terms
as probabilities at which an event occurs, and not, as in deterministic models, as rates. In the
stochastic SIR model, we will assume that epidemic processes, such as infection or death due to
infection, but also every other process governing the demography are stochastic.

Important concepts in the context of stochastic processes are the indexr space and the state
space. The index space is often the time or generation. The state space consists of the values that
the variables of the model can attain. In our case, the state space will consist of positive integers
from 1 to the total population size N. For the mathematical formulation and the simulation of
stochastic models it is important to know whether the index and the state space are continuous
or discrete. The model we are going to deal with belongs to the class of stochastic processes
with continuous index space and discrete state space.



Lastly, I would like to emphasize that stochastic processes should not be confused with
individual-based models. Individual-based models are, as the name suggests, models in which
distinct individuals are simulated. Although they often involve stochastic processes, this is not
part of their definition and needs not always be the case. In contrast, many stochastic models,
such as the one we are going to simulate are population based. Even though our model will
account for the fact that people cannot be divided (i.e. the state space will be discrete), we will
not be able to track individuals.

2 The deterministic SIR model

Most of you will have encountered the susceptible-infected-recovered (SIR) model. One variant
of this model is given in the following set of differential equations:
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S number of susceptible individuals
The variables mean: I number of infected individuals
R number of recovered individuals

host death rate

infection rate

pathogen-induced mortality rate
rate of recovery

And the parameters mean:
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The term that describes the birth of susceptible hosts, m(S + I + R), ensures that deaths
due to non-pathogen-related causes are balanced, and the total population (S + I + R) remains
constant over time, as long as there is no death due to the epidemic (expressed by —vI).

I have written down the equations of the deterministic model because from these equations
the stochastic version can be easily infered. To write down the stochastic model formally is too
cumbersome.

3 The stochastic SIR model

In the stochastic version of the SIR model, the continuous variables are replaced by discrete
numbers, and the process rates are replaced by process probabilities. Let us denote the prob-
ability of the ith process by a;; a will thus be a vector holding the probabilities of all possible



Process Probability

Host birth ap =m(S+1+R)
Death of susceptible host ay = mS

Death of infected host as = (m+v)l
Death of recovered host ay = mR

Infection as = bST

Recovery ag =1l

Table 1: Processes in the stochastic SIR model.

processes. There are six such processes in our stochastic SIR models, which are listed in Table

For example, at time ¢, the probability that a new susceptible host is infected is:
P(Infection) = bSI = as (4)

If this happens the value of S jumps down by 1, and I jumps up by 1. Note that the probabilities
so generated will typically not add up to one (the sum might even go above one): they give the
relative probability of each process.

4 Simulation of the stochastic SIR model

Although conceptually our stochastic SIR model is more difficult than the deterministic one,
it is not more difficult to simulate. This is due to the fact that the discrete variables are
easier for computers to handle than continuous ones. To simulate the stochasticity of processes,
however, requires the use of random number generators. Although random number generators
are not straight-forward to develop on computers (which are inherently deterministic) almost
every programming language has in-built ones nowadays.

The brute-force method to simulate our stochastic SIR model (with its continuous index
space and discrete state space) would be to set very small time-steps in your simulation —
so small that, at most, a single process happens at a given step. This small time step would
be necessary to avoid problems arising from two or more processes happening at the same time
step. The problem with this brute force approach is that in most time steps nothing will happen.
This is not efficient. Fortunately, there are much cleverer algorithms. The following subsection
introduces the so-called Gillespie algorithm which is a very efficient, but still accurate way to
simulate stochastic models.

4.1 Gillespie algorithm

The idea of the Gillespie algorithm is that one first determines when something happens next.
Suppose the current time is £. The time t+7 at which something happens next is an exponentially
distributed random number scaled by the sum of all process rates, >, a;:



tau <- rexp(1l, rate=sum(a))

Look up ?rexp.

Then, the Gillespie algorithm determines what happens next. This is done by drawing a
process randomly from all possible processes according to their respective probabilities. This can
be done easily in R by drawing the index of the next process with a weighted sample command[ﬂ

sample(length(a),1,prob=a)

When we have determined which process happens, we can update the variables (the so-called
state of the system). Then we iterate this process as long as we want.

4.2 Rudimentary R-script

We supplied a starting script with a skeleton of a Gillespie algorithm for the stochastic SIR
model. Please fill in the missing commands and try to make it work:

# set parameters
parms=c(m=1e-4,b=0.02,v=0.1,r=0.3)
initial=c(S=50, I=1, R=0)
time.window=c(0, 100)

# initialize state and time variables and write them into output
state <- initial
time <- time.window[1]

# define output dataframe

output <- data.frame(t=time,
S=state["S"], I=state["I"], R=state["R"],
row.names=1)

# define how state variables S, I and R change for each process
processes <- matrix(0, nrow=6, ncol=3,
dimnames=list(c("birth",

"death.S",

"infection",

"death.I",

"recovery",

"death.R"),

C(IIdSll s HdIII s lldR")))

!Check ?sample to see how it handles a probability vector that does not add up to one—which is impertinent
behaviour for a total probability.



# process probabilities
probabilities <- function(state){
<.

}
while(time < time.window[2] & state["I"]1>0){

# calculate process probabilities for current state
<..>

# WHEN does the next process happen?
<o

# update time
<..00>

# WHICH process happens after tau?
<...0>

# update states
<o

# write into output
output <- rbind(output,c(time,state))

output

This script is supplied in a file called start_stochSIR.r. Once you have completed this
script and it works you should plot a few epidemics. Later on, when you are working on the
exercises you will want to run the algorithm repeatedly with different parameters. An efficient
way to do this is to write a function that includes the algorithm, and then you only need to call
this function with the appropriate parameters from the main body of your program. See the
“functionized” version of the incomplete starting script start_stochSIR_f.r on the webpage

5 Exercises

5.1 Basic exercises

Ebl. Extinction. One of the main aspects in which deterministic and stochastic models differ
is extinction. In the deterministic SIR model, an epidemic never truly goes extinct in a
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limited time frame because the number of infected hosts declines exponentially and reaches
zero only at infinity. To work around this shortcoming, in a deterministic framework an
epidemic is said to go extinct if it has a negative growth rate. In contrast, in our stochastic
SIR model an epidemic can become extinct in a more direct sense, i.e. the number of
infected hosts can become zero without waiting forever.

As you may have learned in previous courses, in a deterministic model an epidemic will
go extinct (according to the definition above) if the basic reproduction number, Ry of the
infection is less than one. We will test if this is also true in our stochastic model. The
basic reproduction number in our model is given by:

bN
Ro_m+v+r (5)

Here N denotes the initial number of hosts in the simulation.

Does the basic reproduction number also divide the dynamics into extinction and non-
extinction in our stochastic SIR model?

To investigate this question, we could vary the Ry by changing the value of the virulence
parameter v, and check in how many cases the epidemic goes extinct. To get accurate
results you will have to run the epidemic at least 100 times for each value of the virulence
parameter. In these multiple runs of the epidemic you should keep the initial conditions
the same (initial=c(8=50, I=1, R=0)), and only vary the parameter v. Please write a
script which estimates the extinction probability for different values of Ry.

Compare deterministic and stochastic dynamics. To further compare deterministic
and stochastic models, we provide a script for the deterministic SIR model in the file
SIR-determ.R:

sir <- function(t,x,parms){

S <- X["S"]
I <- X[“I"]
R <- X["R"]

with(as.list(c(parms)),{
ds <- m*(S+I+R) - m*S - b*I*S
di <- b*I*S - (m+v+r)*I
dr <- r*I - m*R
der <- c(ds,di,dr)
list(der)
1))

SIR.determ <- function(parms, initial, time.window){
require(deSolve)
times <- seq(time.window[1], time.window[2], length=101)
as.data.frame(lsoda(initial, times, sir, parms))

3



This script produces output of the same form as SIR-stoch.R. Plot the dynamics for the
default parameters of SIR.stoch.

The output from a single run of the stochastic SIR model is never the same. Therefore,
to compare the dynamics of the stochastic SIR model to the deterministic one we will
have to average the outcome of many runs of the stochastic SIR model. Thus, first run
SIR.stoch 100 times and save the results in a data frame. One column of the data frame
should contain the number of the run, and should be called run. Save this data frame as
sims.100:

sims.100<-cbind (run=1,SIR.stoch(parms,init,tw))
for(r in 2:100){

sims.100 <- rbind(sims.100,cbind(run=r,SIR.stoch(parms,init,tw)))
}

rm(r)

One technical problem with the data frame that contains multiple runs of SIR.stoch is
that the times at which something happens are irregular and do not coincide across runs.
(This is a consequence of the Gillespie algorithm.) To work around this problem, we supply
the function intpol which can be found in the file intpol.R.

intpol <- function(sim, var, t){
var.out <- vector("numeric", length=length(unique(sim$run)))
for(r in unique(sim$run)){
ind <- sim$run==r
var.out[r] <- stepfun(sim[ind,"t"],c(NA,sim[ind,var])) (t)
}
var.out

3

This function takes as input a data frame sim with the results of multiple runs of SIR.stoch
and puts out a vector containing the interpolated value of a variable (“S”, “I” or “R”) at
time t for each run of SIR.stoch.

Now we can start comparing the dynamics of the stochastic with that of the deterministic
SIR model. First define a vector with times at which we want to calculate the means of
“S” “I” and “R” in sims. 100, for example:

t.seq <- seq(1,100,1)

Now source the definition in intpol.R and calculate the means of S using the command
sapply:

source("intpol.R")
S.seq <- sapply(t.seq, function(t) mean(intpol(sims.100,"S",t)))

Do this also with I and R and then plot the results onto the same plot as the results of
SIR.determ.

What is the difference? Can you explain this difference?
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5.2

Eal.

Ea2.

Ea3.

More on extinction: How does the extinction probability change if you seed the epidemic
with more than one infected individual?

Advanced exercises

Distribution of S, I and R

If you wanted to fit the deterministic SIR model to data you could minimise the sum
squares of the deviations of the model prediction from the data. By doing this you would
assume that the errors are normally distributed. But is this a reasonable assumption?

There is a lot of variability across runs of our stochastic SIR model. Rather than a nuisance,
this is actually a virtue of stochastic models because the variability tells you about the
error distribution (at least partially) that is necessary for statistical inferenceﬂ

To look at the distribution of the variables plot histograms of S, I and R at different time.
Use the data frame sims. 100 you have previously generated. Histograms are plotted with
the command hist.

To check the normality, we can produce a so-called Quantile-Quantile plot, or Q-Q plot.
On such a plot, normally distributed data will fall approximately onto a straight line. In
R the Q-Q plot is implemented as the function qgnorm.

More on the dynamics: Is there also a difference between deterministic and stochastic
dynamics in a parameter range in which there is almost no extinction (eg v = 0)?

To move from understanding the technicalities of the model to actually using it to simulate
interesting epidemiological scenarios, please, refer to the Level 1 module on ‘SIR models
of epidemics’. You can use the stochastic model to answer any of the questions posed in
the frame of the deterministic model. Stochastic effects are important if there are events
that are rare. Can you think of further situations where this might be relevant?

2 Statistical inference is the area of statistics that deals with the fitting of models to data and the estimation
of parameters.
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