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2. Time Table 

Zoom links 
The keynotes, the social activity, and the talks of Parallel Session 1 will take place in 
the following zoom meeting room: 
https://ethz.zoom.us/s/97080726192 
 
The talks of Parallel Session 2 will take place in the following zoom meeting room: 
https://ethz.zoom.us/s/97186438549 
 
 

Thursday, August 20, 2020 
(all times are indicated according to Central European Time) 
 

Time Parallel Session 1 Parallel Session 2 
13:00 - 
13.15 

Welcome 
Reto Knutti 

13:15 - 
14:15 

Title tbc 
Markus Reichstein 

 Remote Sensing Machine Learning and Transparency 

14:30 
- 

15:00 

Advances and limitations in the use of 
satellite imagery for deforestation and 

degradation monitoring and reduction in 
tropical forests 

Federico Cammelli, Owen Cortner, Janina 
Grabs, Samuel Levy, Radost Stanimirova, 

Rachael Garrett 

Transparency, Interpretability and Data 
Availability: Key Challenges in Tackling 

Climate Change with AI 
Joyjit Chatterjee, Nina Dethlefs 

15:00 
- 

15:30 

Towards Data-Informed Climate Sciences 
- Leveraging Machine Learning Inferences 

of Satellite Observations 
Srija Chakraborty 

Exploring deep neural networks for 
probabilistic postprocessing of NWP wind 

forecasts in complex terrain 
Daniele Nerini, Max Hürlimann, Lionel 

Moret, Jonas Bhend, Mark Liniger 

15:30 
- 

16:00 

Planetary Scale Location Insights serving 
Climate Adaptation 
Gopal Erinjippurath 

The Importance of Neural Network 
 

 Interpretation Techniques for Climate and 
Weather Science 

Amy McGovern, Ryan Lagerquist, 
Elizabeth Barnes, Imme Ebert-Uphoff 

16:00 - 
16:30 Break 

16:30 - 
17:30 

Evaluating data: a fitness-for-purpose view 
Wendy Parker 

from 
18:00 Social Activity 
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Friday, August 21, 2020 
(all times are indicated according to Central European Time) 
 

Time Parallel Session 1 Parallel Session 2 

 Causality & 
Scientific Understanding Climate Social Sciences 

08:30 
- 

09:00 

Response-Guided Learning to boost S2S 
Forecasting 

Sem Vijverberg, Dim Coumou 

Opportunities of machine learning in 
agricultural insurance 

Tobias Dalhaus, Thomas Heckelei, 
Robert Finger 

09:00 
- 

09:30 

The Impact of Statistics and Machine 
Learning on Understanding in Climate 

Modeling 
Julie Jebeile, Vincent Lam, Tim Raez 

A User Study of Perceived Carbon 
Footprint 

Victor Kristof, Lucas Maystre, Matthias 
Grossglauser, Patrick Thiran 

09: 30 
- 

10:00 

Causal Networks as a framework for 
climate science to improve process 

understanding 
Marlene Kretschmer, Ted Shepherd 

Projecting Downscaled Social and 
Behavioral Impacts from Climate Change 

Using Mobile Devices 
Kelton Minor, Andreas Bjerre-Nielsen, 

Jonas Skjold Raaschou-Pedersen, Sune 
Lehmann, David Dreyer Lassen 

10:00 - 
10:30 Break 

10:30 - 
11:30 

Synthesis of the Project: “Combining Theory with Big Data” 
within the National Research Programme “Big Data” 

Benedikt Knüsel, Marius Zumwald 

 Uncertainty in Observational Data and 
Modeled Outputs 

Domain-Specific Background  
Knowledge and Machine Learning 

11:45 
- 

12:15 

 
Sparse principal component analysis as a 

tool to explore heterogeneous datasets 
from multidisciplinary field experiments 

Sebastian Landwehr, Michele Volpi, 
Fernando Perez-Cruz, Julia Schmale 

Stochastic generation of climate and 
weather data fields with generative 

adversarial networks 
Jussi Leinonen, Alexis Berne 

 

12:15 
- 

12:45 

Addressing uncertainty in climate models 
data and an overview of application of 

data science in climate studies 
Titas Ganguly, Dhyan Singh Arya 

How to combine domain knowledge with 
the capacity of machine learning for 

discovery? 
Eniko Szekely 

12:45 
- 

13:15 

Towards a generalized framework for 
missing value imputation of fragmented 

Earth observation data 
Verena Bessenbacher, Lukas 

Gudmundsson, Sonia Seneviratne 

The wrong dichotomy: Data science as 
supplementing, rather than displacing 

other methods 
Dominik Fitze 

13:15 
- 

14:30 
Break 

 Interdisciplinarity and Scientific 
Practice Modeling and Representation 

14:30 
- 

15:00 

Challenges and Opportunities in the 
Publication of Global-scale, High-
resolution Climate Model Outputs  

Ionut Iosifescu Enescu, Gian-Kasper 
Plattner, Dirk Nikolaus Karger, David 

Hanimann, Dominik Haas-Artho, Martin 
Hägeli, Niklaus E. Zimmermann, Konrad 

Steffen 

(How) can machine learning be used for 
predictive modeling of the Earth system? 

Benjamin Stocker 
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15:00 
- 

15:30 

 
Situated knowledge and climate services: 

miscellaneous scales and levels of 
interpretation, using physical observations 

and data science 
Melissande Machefer, Arthur Brun 

Building a Seasonal Earth System Model 
Emulator for local temperature 

Shruti Nath, Quentin Lejeune, Lea 
Beusch, Carl Friedrich Schleussner, 

Sonia Seneviratne 
 

15:30 
- 

16:00 

Multilingual Structured Climate Research 
Data in Wikidata - The Community 

Perspective 
Cristina Sarasua, Daniel Mietchen 

Can Machines Learn Convection? The 
epistemic implications of machine-

learning parameterizations in climate 
science 

Suzanne Kawamleh 

16:00 
- 

16:30 

Multilingual Structured Climate Research 
Data in Wikidata - The Data Perspective 

Daniel Mietchen, Cristina Sarasua 

The role of machine learning in site-
specific wind turbine power curve 

prediction 
Sarah Barber 

16:30 
- 

17:00 
Break 

17:00 
- 

18:00 
Prospects for data science to advance the study of social climate impacts 

Nick Obradovich 

18:00 
- 

18:30 
Closing Words 

Reto Knutti & David Bresch 
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3. Keynotes and Plenaries 

P1 
Machine-learning-model-data-integration for a better understanding of the 
Earth System 
Markus Reichstein 

The Earth is a complex dynamic networked system. Machine learning, i.e. derivation of 
computational models from data, has already made important contributions to predict and 
understand components of the Earth system, specifically in climate, remote sensing and 
environmental sciences. For instance, classifications of land cover types, prediction of land-
atmosphere and ocean-atmosphere exchange, or detection of extreme events have greatly 
benefited from these approaches. Such data-driven information has already changed how Earth 
system models are evaluated and further developed. However, many studies have not yet 
sufficiently addressed and exploited dynamic aspects of systems, such as memory effects for 
prediction and effects of spatial context, e.g. for classification and change detection. In particular 
new developments in deep learning offer great potential to overcome these limitations. 

Yet, a key challenge and opportunity is to integrate (physical-biological) system modeling 
approaches with machine learning into hybrid modeling approaches, which combines physical 
consistency and machine learning versatility. A couple of examples are given with focus on the 
terrestrial biosphere, where the combination of system-based and machine-learning-based 
modelling helps our understanding of aspects of the Earth system.  

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat, 
2019. Deep learning and process understanding for data-driven Earth system science. Nature 
566, 195-204. 

P2 
Evaluating data: a fitness-for-purpose view 
Wendy Parker 

There is a tendency to think that data and data models are ‘good’ to the extent that they mirror the 
world. We suggest an alternative view that calls for evaluating data and data models according to 
their adequacy or fitness for particular purposes. We discuss some implications of adopting this 
fitness-for-purpose view and show how such a view aligns with salient features of practice, 
especially the iterative reuse and repurposing of data. 

P3 
Synthesis of the Project: “Combining Theory with Big Data” 
Benedikt Knüsel, Marius Zumwald 

In recent years, the ability to gather and store information has increased dramatically, and the ability 
to make use of these increasing volumes of data has improved. This advent of big data has opened 
up new opportunities for scientific research, including for research on climate change. The NRP75 
project «Combining Theory with Big Data» explored new opportunities and challenges associated 
with big data in climate research. It did so by combining a philosophy of science perspective with 
applied work aiming to predict urban temperature distribution in high-resolution. In this synthesis talk, 
we outline some of the central findings from this project. We specifically discuss how the uncertainty 
of datasets and data-driven models may be assessed, and how data-driven modeling may be 
employed by researchers who aim not only at predicting but also at understanding. Based on the 
philosophical and applied work, we also discuss how and why domain-specific background 
knowledge is crucial for applying new forms of data and data-driven models in scientific contexts.  
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P4 
Prospects for data science to advance the study of social climate impacts 
Nick Obradovich 

What have we learned from the use of data science in the study of the social impacts of climate? 
What are some of the most important outstanding questions? Why do these questions even matter? 
And how might data science tools and techniques enable us to answer them? In this talk I will outline 
some priorities, potential pitfalls, and promising prospects for the use of data science in estimating 
the future social impacts of climate change. 
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4. Abstracts of Talks 

Remote Sensing 
Thursday, Parallel Session 1, 14:30 – 16:00 

1 
Advances and limitations in the use of satellite imagery for deforestation 
and degradation monitoring and reduction in tropical forests. 
Federico Cammelli1, Owen Cortner1, Janina Grabs1, Samuel Levy1, Radost Stanimirova2, 
Rachael Garrett1 

1ETH, 2Boston University 

The continued deforestation and degradation of primary forests and biodiversity hotspots in 
tropical areas are crucial challenges in the fight against global warming and biodiversity loss. 
The majority of forest loss is due to the expansion of commodity agriculture and commercial 
forestry operations, including soy, beef cattle, palm oil, timber, and pulp and paper production. 
Satellite imagery has become an important tool for practitioners to monitor forest cover loss in 
real time, assess the compliance of actors with policies that prohibit deforestation and 
degradation, and select priority non-compliant actors or regions to engage with. Remotely 
sensed observations are also the primary data source to estimate changes in the rates of forest 
change, its causes, and the effectiveness of forest policies. The specifics of how remotely 
sensed observations are utilized in science and practice determines the ecological and social 
outcomes of forest governance interventions. This paper provides a review of the existing 
literature and governmental and non-governmental programs that utilize remote sensing for land 
change detection and monitoring to: 1) Assess advances in the use of satellite-based 
observations and data science tools in tropical forest research and practice and 2) Identify 
common pitfalls associated with satellite data use that undermine the rigor and generalizability 
of analyses based on remotely sensed data. These pitfalls involve low primary data quality 
(especially regarding imagery dates and time series) and a lack of best practice consensus for 
reporting and comparing outcomes, bias, and uncertainty as a result of differences in definitions 
of deforestation and degradation, sampling approaches, and temporal and spatial reporting and 
attribution decisions. We conclude by providing recommendations to increase the effectiveness 
of using satellite-based monitoring systems for coupled human-natural system analysis and 
forest governance. 

2 
Towards Data-Informed Climate Sciences - Leveraging Machine Learning 
Inferences of Satellite Observations 
Srija Chakraborty1 

1NASA Goddard Space Flight Center 

Data acquired by the ever-increasing Earth observing satellites have created a rich repository 
comprised of fine spatial, spectral and temporal resolution observations collected by sensors 
with varying modalities. Uniform data acquisition on a global scale, makes such datasets 
suitable for stuyding different Earth system components, retrieving its geophysical parameters, 
monitoring short- and long-term trends, and analyzing these variations to understand changes 
in climate, its drivers and impact. However, the large data volume and the complexity of the 
patterns, necessitates the utilization of machine learning (ML) algorithms to extract meaningful 
information from these observations. 
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Additionally, for gaining accurate insights from ML models of satellite observations, four aspects 
are identified that should be incorporated in the analysis pipeline to increase the impact of ML in 
climate sciences and policies. 

Firstly, incorporating domain knowledge and physical models while training ML models is 
essential to enforce constrains and relationships between parameters that may not be inferrable 
solely from the data. Knowledge-guided models are more reliable as the predictions satisfy 
domain-specific equations. Moreover, it is crucial to explore interpretable machine learning for 
increasing a scientists' confidence on the models and for deciphering the most relevant features 
for the task. 

Secondly, ML models are dependent on data quality. Varying acquisition conditions lower the 
quality of retrieved geophysical parameters which are used for model training, thereby 
deteriorating the model quality and predictions. Careful consideration of data quality and 
simulations of uncertainty are necessary as the model outputs are utilized for further analyses.  

Thirdly, evaluation metrics should be tailored to analyze performance on the task at hand at 
diverse geographic locations by assessing the results with statistical measures and on its 
acceptability to domain-experts.  

Finally, all abovementioned factors will require interdisciplinary collaboration and domain-expert 
feedback at every stage of the  ML pipeline for data-informed climate science and policy.

3 
Planetary Scale Location Insights serving Climate Adaptation 
Gopal Erinjippurath1 

1 Sust Global 

The recent explosion of new data streams from varied satellite streams necessitates the use 
of automation techniques that allow for processing and refining raw sensor data to streams 
of foundational feature information for business insights and geosciences research. Deep 
learning provides new avenues for deriving insights from imagery. Recent approaches allow 
for feature detection and localization over varied context and different imaging conditions. 
Overhead satellite imagery is varied and rich, but fundamentally different from other data 
sources and introduces unique challenges towards scalable location insights. 

We will explore the use of modern deep learning approaches to object detection, semantic 
segmentation towards feature extraction and meaningful change detection in satellite 
imagery. We identify techniques towards sampling data, leveraging heterogeneous datasets, 
performance benchmarking and tuning models towards generalized performance. We will 
walk through the technical challenges involved with serving results from these deep learning 
models in a scalable manner along with essential metadata for interpretability and usability 
for our customers. We then explore approaches with human in the loop towards improved 
performance over time towards scalable location-based intelligence served across the 
entirety of the Earth’s landmass and discuss the challenges and opportunities at the frontiers 
of geospatial data and location-based insights. Specific applications of using such derived 
data streams along with climate risk indicators to serve insights towards climate adaptation 
will be presented. 

By imaging the Earth every day at 3.7 m resolution and enabling on-demand follow up 
imagery at 72 cm resolution, Planet offers a uniquely valuable dataset for creating datasets 
for imagery analytics over varied context. We use the above approaches towards creating 
foundational data feeds serving new applications – and how this new data feed can be 
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spatially joined with other data sources to serve location insights, that help us explore and 
better understand climate adaptation.  
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Machine Learning and Transparency 
Thursday, Parallel Session 2, 14:30 – 16:00 

4 
Transparency, Interpretability and Data Availability: Key Challenges in 
Tackling Climate Change with AI 
Joyjit Chatterjee1, Nina Dethlefs1 

1University of Hull 

With growing natural disasters, rise in carbon emissions and faltering ecosystems, the need 
for furthering research in climate change has become integral. Recent studies have shown 
that data science can play a vital role in better understanding natural phenomena and 
discovering novel insights. Although no silver bullet, machine learning (ML) has been 
successfully utilised in an array of applications, ranging from prediction and assessment of 
droughts and floods, energy control in grids, water quality modelling, operations & 
maintenance (O&M) of renewable energy sources such as wind and solar energy etc. 
However, the existing studies suffer from 2 prime challenges:  

(1) Lack of data availability -  domain specific information e.g. from wind turbines, is often 
commercially sensitive, making it difficult to procure large amounts of useable data - 
especially new kinds of data which can possibly generate significant new insights. Transfer 
learning techniques can help learn from little or no labelled data, ensuring accuracy and 
helping algorithms to generalise better. 

(2) The black-box nature of (deep) ML models makes them suffer from the problem of 
transparency, wherein, although predictions can often be made with high accuracy, 
confidence and trust in the model decisions is difficult. A human intelligible diagnosis of 
when, why, what and how a model performs (or not) is essential. Hybrid ML techniques can 
bridge the gap between transparency and accuracy, and causal inference can help discover 
hidden insights from data. Natural language generation can further help in generating 
informative reports and descriptions of natural disasters and O&M strategies for renewable 
energy sources. 

We believe that there is enormous opportunity for the data science community to pursue 
research to tackle some of these challenges in ensuring reliable decision making and 
envisage that making data-driven decision support systems intelligent and transparent would 
have a significant impact in tackling climate change. 

5 
Exploring deep neural networks for probabilistic postprocessing of NWP 
wind forecasts in complex terrain 
Daniele Nerini1, Max Hürlimann1, Lionel Moret1, Jonas Bhend1, Mark Liniger1 

1Federal Office of Meteorology and Climatology MeteoSwiss 

Despite the many success stories related to the physical approach of numerical weather 
predictions (NWPs), the accurate forecasting of surface winds and their corresponding 
uncertainty in complex terrain remains an important challenge. Even for kilometer-scale 
NWP, many local topographical features remain unaccounted, often resulting in biased 
forecasts with respect to local weather conditions.  
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Through statistical postprocessing of NWP, such systematic biases can be adjusted a 
posteriori using wind measurements. However, for unobserved locations, these approaches 
fail to give satisfying results. Indeed, the complex and nonlinear relationship between model 
error and topography calls for more advanced techniques such neural networks (NN).  

Furthermore, the prevalence of aleatoric uncertainties in wind forecasts demands the 
adoption of a probabilistic approach where the statistical model is not only trained to predict 
an error expectation (the bias), but also its scale (standard deviation). In this context, the 
model must be trained and evaluated using a proper scoring rule (Gneiting and Raftery 
2007). 

In an interdisciplinary effort between meteorology and computer science, we developed a 
machine learning application to efficiently handle very large datasets (order of TBs), train 
various probabilistic NN architectures, and test multiple combinations of predictors. We used 
a game theoretic approach (Lundberg and Lee 2017) to explain the predictions from the 
deep neural networks and thus maintain a certain level of interpretability within data-driven 
models.  

As a result, we were able to improve the quality of the NWP model output not only at the 
location of reference measurements, but also at any given point in space, and for forecasts 
up to 5 days into the future. More importantly, the results underline that the combination of 
physical models with a data-driven approach opens new opportunities to improve weather 
forecasts and in particular weather warnings. 

6 
The Importance of Neural Network Interpretation Techniques for Climate 
and Weather Science 
Amy McGovern1, Ryan Lagerquist1, Elizabeth Barnes2, Imme Ebert-Uphoff2 

1University of Oklahoma, 2Colorado State University 

In this talk we highlight important uses of neural network visualization techniques for climate 
and weather applications.  As neural networks/deep learning become more widely used in 
these domains, scientists want to gain insights into the strategies used by the neural network 
and understand the physical relationships that a model has learned about the tasks being 
studied.  Such understanding has several benefits: 1) It increases trust in the neural network 
model and 2) We can discover new science by having the neural network discover not-yet-
known relationships.  

We present multiple approaches for model interpretation of neural networks that we have 
found particularly useful and illustrate them for three different applications, namely for 
predicting hailstorms, predicting tornadoes, and to identify spatial patterns of climate change 
based on global, annually averaged temperature maps.  Network-based interpretation and 
visualization techniques are varied in how they highlight what the model has learned.  Some 
approaches, including saliency maps, Grad-CAM, and Layer-wise Relevance Propagation 
(LRP), highlight specific areas of the inputs that the network focuses on to make its 
prediction, and can also be used to visualize the intermediate layers of the network.  We 
demonstrate the use of saliency maps and Grad-CAM for the hailstorm and tornado 
networks, and the use of LRP to identify spatial patterns of climate change. We also present 
another approach, backwards optimization, which uses gradient descent to create a 
synthetic input that activates the neural network in a certain way.  We demonstrate the use 
of backward optimization in the context of tornado prediction to create a thunderstorm that 
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maximizes predicted tornado probability, and in the context of finding patterns of climate 
change to identify ubiquitous climate model biases.  Finally, we discuss lessons learned 
about the overall process of identifying physically meaningful results from neural networks 
for climate and weather applications. 
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Causality and Understanding 
Friday, Parallel Session 1, 08:30 – 10:00 

7 
Response-Guided Learning to boost S2S Forecasting 
Sem Vijverberg1, Dim Coumou1 

1Institute for Environmental Studies, VU Amsterdam 

Seasonal to sub-seasonal (S2S) predictability could provide societies with valuable 
information on weather-related risk, allowing decision-makers to initiate early warning action 
plans and to optimize resource management. Teleconnections can be an important source 
of predictive skill, yet dynamical models often fail to represent teleconnections accurately. 
The model development community can therefore benefit from a better understanding of the 
underlying physical drivers. One can also directly use the statistical information deduced 
from physical drivers and merge it with information from dynamical models, i.e. creating a 
hybrid forecast model. The dominant physical drivers differ for different geographical regions 
and different timescales. Machine learning might help to extract the most important physical 
drivers from multi-dimensional climate data by reducing the dimensionality while maintaining 
all relevant information of all potential drivers.  

We are developing a rigorous data-driven framework that enables automatic detection of 
interpretable physical drivers on S2S timescales. The framework is suited to cast this 
information into a statistical model while attempting to minimize overfitting issues, even 
though we are limited by the number of independent data-points on these timescales. From 
econometrics we known that forecast skill does not inform about the causal structure. 
Therefore, the framework uses statistical learning in conjunction with an advanced causal 
inference technique.  

So far, this framework has been successfully applied to study and predict the Polar vortex 
variability and U.S. heatwaves. In future work, we hope to improve the dimensionality 
reduction step and introduce wavelet-like transformations on the features to extract the 
signal from the noise. 

8 
The Impact of Statistics and Machine Learning on Understanding in 
Climate Modeling 
Julie Jebeile1, Vincent Lam1, Tim Raez1 

1University of Bern 

In this paper, we investigate how the use of statistical methods and machine learning 
techniques affects our ability to understand in climate modeling. Prima facie, the main goal 
of climate modeling is to provide projections in view of decision-making with respect to 
climate change, while understanding is secondary. As a consequence, it could be thought 
that the use of machine learning techniques in climate modeling is unproblematic, because 
these techniques do considerably enhance our predictive abilities, despite the fact that 
machine learning models are black boxes. 

We argue for a more nuanced position. Based on a multidimensional and graded notion of 
understanding, we maintain that understanding is indispensable to appropriately evaluate 
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climate models. To support our position, we first articulate four criteria for understanding. 
Understanding a climate model in a particular context does not only involve empirical 
adequacy, but also our grasp of processes producing outputs, physical consistency of 
outputs, and the scope of the validity of the climate model. What is more, these criteria are 
not categorical, but come in degrees. We then put these four criteria to work in two cases of 
climate modeling. In the first case, we investigate how the use of statistical downscaling in 
regional climate modeling affects understanding; in the second case, this is contrasted with 
the use of deep neural networks as an alternative to super-parametrization in a global 
circulation model. 

The main upshot of the paper is a twofold continuity of understanding. First, the use of 
machine learning will decrease understanding along some dimensions; however, the same 
tendencies can also be observed for more traditional statistical methods. Second, there is a 
tradeoff between an increase in empirical adequacy (with respect to the validated physical 
domain) and a decrease along the other three dimensions. 

9 
Causal Networks as a framework for climate science to improve process 
understanding  
Marlene Kretschmer1, Ted Shepherd1 

1University of Reading 

In the light of ongoing anthropogenic climate change and associated risks, supporting 
regional decision making should be a guiding principle of climate research. However, 
seasonal forecast models only have low skill and climate models often give inconclusive 
results about regional aspects of climate change. One major source of uncertainty are 
dynamical drivers in the climate system, such as storm tracks or the stratospheric polar 
vortex, which are not well understood theoretically and where models show diverse 
responses. 

The recent hype of machine learning promises data-driven solutions to these issues. While 
data-centric methods such as deep learning have and certainly will make notable 
contributions to the earth sciences, their power lies in their ability to efficiently describe 
complex relationships present in the data. There is reason to doubt whether these methods 
can, on their own, deal with the sort of epistemic uncertainty described above. Moreover, 
machine learners and climate scientists often lack a common language, making successful 
collaboration still difficult. In particular, climate scientists are trained to think in terms of 
causal relationships, whereas machine learning is mostly descriptive (i.e. correlational) and 
does not explicitly incorporate domain knowledge. 

Here we call for the use of causal networks in climate science as a framework to overcome 
some of these challenges. We argue that causal networks are a simple yet powerful tool to 
translate qualitative expert knowledge about physical processes into mathematical objects, 
to gain quantitative information about the role of these processes through applying the rules 
of causal inference.  
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Climate Social Sciences 
Friday, Parallel Session 2, 08:30 – 10:00 

10 
Opportunities of machine learning in agricultural insurance 
Tobias Dalhaus1, Thomas Heckelei2, Robert Finger1 

1ETH Zürich, 2University of Bonn 

Weather extremes affect agricultural production and thus threaten global food security. 
Traditionally, insurances provide payouts to farmers to reduce the financial exposure to 
these risks. Classical indemnity based insurances, where loss adjusters visit the affected 
farms to quantify the losses, cannot be applied at large scale for increasingly important perils 
such as drought and heat, due to information asymmetries between farmers and insurers. 
Weather index insurances complement insurance solutions by providing data driven payouts 
based on measurable weather conditions (i.e. a weather index; such as the rainfall at a 
weather station) without requiring on-farm yield measurements. This payout is determined 
by a function that is usually parametrized using regression techniques that are informed by 
observed farm-level yield records and weather index data. For index building, data sources 
like satellites, weather stations, phenology reporters or farm surveys are pulled together. 
The quantity and quality of available data for these purposes is increasing massively. Based 
on estimated relationships based on past observations the payout function is estimated and 
future insurance payouts are based weather index values only.  

Machine learning approaches are currently not used in this process, but we here argue that 
future research on weather index insurance design should incorporate machine learning 
approaches that are expected to better predict yields based on environmental conditions. 
Machine learning is designed to get a prediction of an outcome variable (here crop yields) 
based on one or several input variables (here weather and other environmental conditions). 
Especially, deep neural network techniques can help to incorporate the vast amounts of data 
on various environmental conditions and their often non-linear interactions to predict crop 
yields. Thus machine learning techniques can deliver spatially explicit yield predictions. This 
potentially helps to better understand agricultural weather risks in space and time, which in 
turn can inform index insurance payouts.  

11 
A User Study of Perceived Carbon Footprint 
Victor Kristof1, Lucas Maystre1, Matthias Grossglauser1, Patrick Thiran1 

1Ecole Polytechnique Fédérale de Lausanne 

To put the focus on actions that have high potential for emission reduction, we must first 
understand whether people have an accurate perception of the carbon footprint of these 
actions. If they do not, their efforts may be wasted. We aim at modeling how people perceive 
the carbon footprint of their actions, which could guide better-informed climate 
communication. 

Consumers and citizens repeatedly face multiple options with varying environmental impact. 
Except for a handful of experts, nobody is able to estimate the absolute quantity of CO2 
emitted by their actions, say flying from Zurich to Berlin. Most people, however, are aware 
that taking the train for the same trip would release less CO2. Hence, in the spirit of social-
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psychology studies, we posit that the perception of a population can be probed by simple 
pairwise comparisons: Instead of asking difficult questions about each action and averaging 
the answers, we ask simple questions in the form of comparisons and design a non-trivial 
statistical model to estimate the perception. 

Our contributions are as follows. First, we cast the problem of inferring a population's global 
perception from pairwise comparisons as a Bayesian linear regression. The Bayesian 
formulation of the model enables us to take an active-learning approach to maximize the 
information gained from each comparison, i.e., this enables us to select the actions to 
compare in a statistically significant way. Finally, we develop a Web platform to collect real 
data from users in Switzerland. 

We perform an in-depth life cycle analysis of the carbon footprint of Swiss citizens to obtain 
a list of actions with ground-truth carbon footprint. We compare these true values to the 
perceived carbon footprint estimated by our model to reveal discrepancies (underestimation 
and overestimation) for some actions, suggesting that some individual mitigation efforts 
could be adjusted. 

12 
Projecting Downscaled Social and Behavioral Impacts from Climate 
Change Using Mobile Devices 
Kelton Minor1, Andreas Bjerre-Nielsen1, Jonas Skjold Raaschou-Pedersen1, Sune 
Lehmann2, David Dreyer Lassen1 

1 University of Copenhagen, 2 Technical University of Denmark 

The first and second order effects of global climate change are already being detected, 
attributed and addressed locally1–5. In recent years, the practice of downscaling climate 
models to bridge the void between projected global effects and regional impacts has 
provided an essential guiding reference for policy makers and adaptation planners6,7. 
However, beyond understanding probable physical impacts under different emissions 
scenarios, climate impact researchers and decision makers increasingly seek ever more 
localized estimates of expected climate impacts on the behavior, productivity and well-being 
of specific human social systems, institutions and communities8. Drawing on novel empirical 
tools from climate econometrics9 and reality mining methods from computational social 
science10,11, we link over two years of minute-to-minute social and behavioral data from 
mobile phones for a specific social system - the freshman cohort of the Technical University 
of Denmark - with high resolution meteorological and climatological data. Using the 
Copenhagen Networks Study12 as an illustrative case, we discuss the prospects and perils 
of linking empirically-derived historical estimates of localized human environment 
relationships with downscaled and bias-corrected climate model output. Specifically, we 
highlight issues of measurement error across spatially and temporally aggregated data sets 
and discuss possible threats when extrapolating historical inferences to future time horizons 
and cohorts. We contend that careful consideration should be paid to both uncertainty in 
downscaled climate model output and in plausible social ecological developments when 
assessing the dependability of quantitative behavioral impact projections.  
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Uncertainty in Observational Data and Model Outputs 
Friday, Parallel Session 1, 11:45 – 13:15 

13 
Sparse principal component analysis as a tool to explore heterogeneous 
datasets from multidisciplinary field experiments 
Sebastian Landwehr1, Michele Volpi2, Fernando Perez-Cruz2, Julia Schmale1 
1 Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne, School of Architecture, 
Civil and Environmental Engineering, Lausanne, Switzerland 

2 Swiss Data Science Center, ETH Zurich and EPFL, Switzerland 

During the research cruise Antarctic Circumnavigation Expedition (ACE) during the Austral 
summer 2016/2017 a multidisciplinary team of researchers made observations of many 
oceanic and atmospheric variables in a wide range of environmental conditions and in a 
region of the world that is today still heavily undersampled. Overviewing and connecting the 
bounty of observations, which were sampled at different temporal resolutions ranging from 
seconds to several hours is both challenging and necessary to facilitate interdisciplinary 
research on the processes that connect life in the ocean with the concentration of trace 
gases and aerosols in the atmosphere. 

Within the ACE-DATA - (Delivering Added-value To Antarctica) research project funded by 
the Swiss Data Science Center (SDSC) we have developed an approach based on sparse 
Principal Component Analysis (sparse PCA) that decomposes time series of observed 
variables (onboard measurements) into a set of latent variables (principal components) of 
much lower dimension. This allows to highlight common patterns in the along-track spatio-
temporal variation of the observed variables. The joint variability of observations made by 
the different research groups, which become visible as activations of the latent variables, 
have sparked discussions and helped to invigorate the collaboration between the research 
projects. We further quantify the sensitivity of the results to spurious observations by means 
of a bootstrapping strategy. We will present our experiences and discuss the limits and 
potential of this method to support interdisciplinary research projects. 

14 
Addressing uncertainty in climate models data and an overview of 
application of data science in climate studies 
Titas Ganguly1, Dhyan Singh Arya1 

1Indian Institute of Technology Roorkee 

Uncertainties in climate model data stem from structural as well natural causes. According to 
literature the reduction of uncertainty is directly proportional to the number of models used in 
mathematical average ensemble. However, we show here that weighted average of five 
models has higher efficiency (in comparison to mathematical average) in reduction of 
uncertainty. Weighted average ensemble data was generated by a novel statistical 
methodology (based on Bayesian and Orthonormal distribution) using CMIP-5 models for 
eight Koppen climate zones of India. The uncertainty was calculated as the interquartile 
range of 2.5 and 97.5 percentile of a nonparametric PDF of projected anomalies of 
temperature and precipitation. It was seen that the ensemble data had minimum uncertainty 
for all grids for precipitation and for 72.67% grids for maximum temperature (RCP 4.5 and 



 19 

8.5 scenarios). Similar results have been reported from data science backgrounds using 
climate models.  

Data science techniques are developing with the exponential growth in data (4.4 zettabytes 
in 2013) and it naturally finds applications in data rich disciplines like climate science. Since 
it is not constrained by theory, data science can potentially address challenges like non-
linearity and non-stationarity, parameterisation problems, multi-dimensionality etc., in climate 
studies. Application of data science in climate also has various constraints. The objectives 
and language of climate studies are rooted in natural sciences thus necessitating integration 
(of theory and data mining), both at design and interpretation levels, and not complete 
absence of theory.  Data mining techniques are mostly based on the emergent attributes 
without considering the inherent characteristics of data itself (eg: spatio-temporal specificity 
and variability). Also assumptions of independence and homogeneity in data science 
techniques are rarely valid for climate data while sampling of extreme events pose 
challenges with existing data algorithms. Thus opportunities and challenges are abundant in 
application of data-science to climate studies. 

15 
Towards a generalized framework for missing value imputation of 
fragmented Earth observation data 
Verena Bessenbacher1, Lukas Gudmundsson1, Sonia Seneviratne1 

1ETH Zürich 

The past decades have seen massive advances in generating Earth System observations. A 
plethora of instruments is, at any point in time, taking remote measurements of the Earth’s 
surface aboard satellites. This has become invaluable to the climate science community.  
However, the same variable is often observed by several platforms with contrasting results 
and satellite observations have non-trivial patterns of missing values. Consequently, mostly 
only one remote sensing product is used simultaneously. This has led to a fragmentation of 
the observational record that limits the widespread use of remotely sensed land 
observations. We aim towards a generalized framework for mutually gap-filling global, high-
resolution remote sensing measurements relevant for the terrestrial water cycle, focusing on  
soil moisture, land surface temperature and precipitation. To this end, we explore statistical 
imputation methods and benchmark them using a “perfect dataset approach”, in which we 
apply the missingness pattern of the remote sensing datasets onto their matching variables 
in the ERA5 reanalysis data. Original and imputed values are subsequently compared. Our 
approach iteratively produces estimates for the missing values and fits a model in an 
expectation-maximisation alike fashion. This procedure is repeated until the estimates for 
the missing data points converge. The method harnesses the highly-structured nature of 
gridded covarying observation datasets within the flexible function learning toolbox of data-
driven approaches. The imputation utilises (1) the temporal autocorrelation and spatial 
neighborhood within one dataset and (2) the different missingness patterns across datasets, 
i.e. the fact that if one variable at a given point in space and time is missing, another 
covarying variable might be observed and their local covariance could be learned. A method 
based on ridge regression has shown to perform best. This model will be applied to gapfill 
satellite data and create an inherently consistent dataset based exclusively on observations. 
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Domain-Specific Background Knowledge and Machine 
Learning 
Friday, Parallel Session 1, 11:45 – 13:15 

16 
Stochastic generation of climate and weather data fields with generative 
adversarial networks 
Jussi Leinonen1, Alexis Berne1 

1Ecole Polytechnique Fédérale de Lausanne 

Data problems in atmospheric science commonly deal with spatial fields that have complex 
structure. Moreover, observations tend to be incomplete due to sparse spatial coverage, 
inadequate resolution, or uncertainties in the measurement process. This makes climate and 
weather attractive applications for deep learning, which is well suited to processing spatial 
fields with complex patterns. However, trying to predict such fields using typical neural 
networks tends to lead to regression to the mean, yielding blurred results that do not have 
the correct spatial structure. Moreover, predictive models do not generally describe the 
uncertainty of their predictions, while uncertainty quantification is critical in many climate 
applications. 

Generative adversarial networks (GANs) can address the above-mentioned limitations by 
generating spatially realistic output fields stochastically, producing a distribution of solutions 
rather than a single answer, ideally (but in practice not always) converging to the real 
variability of the underlying data distribution. A straightforward GAN variant called the 
conditional GAN can be trained to generate solutions corresponding to a condition given as 
an input. These can be used for common problems in weather and climate data processing, 
such as generating physical fields from the corresponding in-situ and remote sensing 
observations, increasing the resolution of observed data, or predicting the time evolution of 
data fields. Other GAN variants can be used for unsupervised classification, enabling 
information extraction without manual labeling of training examples. 

In this presentation, I will give an overview of GAN theory and the architecture of the neural 
networks needed to implement them. I will show case examples of my work with GANs so 
far, and discuss more generally which problems in climate science could (or already do) 
benefit from them. Furthermore, I'll discuss the current challenges for training GANs for 
weather and climate applications, and in validating and interpreting their results. 

17 
How to combine domain knowledge with the capacity of machine 
learning for discovery? 
Eniko Szekely1 

1Swiss Data Science Center, ETH Zurich and EPFL 

Both machine learning and climate science require underlying knowledge: one on the 
algorithmic side and the other on the domain side. The aim of this talk is to discuss 
similarities and differences between the approaches taken in climate science and machine 
learning, and to question whether by combining them we could further advance our 
understanding of the climate. Besides prediction, one of machine learning’s most attractive 
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features is its ability to discover unknown patterns and interactions in the data and to study 
them in a unified framework. Such interactions often occur between phenomena that evolve 
at different temporal and spatial scales. However, to study strongly nonlinear phenomena 
and interactions, the machine learning methods need to be sufficiently flexible to account for 
such nonlinearities. This often requires many parameters to tune and a good understanding 
of the inner workings of an algorithm. On the other hand, in climate science domain 
knowledge is commonly used to preprocess the data before the actual analysis. For 
example, we might want to remove the seasonal cycle or interannual variability if we are 
interested in studying a phenomenon that is on a lower temporal scale. However, such 
preprocessings lead to loss of information about the interactions between the different 
scales. The open question is how to combine the domain knowledge from climate science 
and the capacity of machine learning for discovery in order to gain further understanding. 
This would most probably require an iterative process and feedback between climate 
scientists and data scientists. The last part of the talk will bring up the problem of 
interdisciplinarity and the growing interest of machine learning students to work on climate 
projects, especially climate change. How can we leverage this interest in order to advance 
the field of climate science?   

18 
The wrong dichotomy: Data science as supplementing, rather than 
displacing other methods 
Dominik Fitze1 

1University of Bern 

Sometimes in philosophy and the wider public, there is an implicit or explicit assumption that 
data science and traditional research methods are opposed to each other. This sentiment 
can be traced back to at least Anderson’s 2008 WIRED Op-ed, which has been discussed 
often in philosophy.  

I contend that this discussion is based on wrong premises. In reality, machine learning and 
“traditional” methods often go hand in hand. Drawing on Reichenstein et al. (2019) and a 
short case study, I will argue that Machine Learning and theory-based modeling are likely to 
go hand in hand, and that such applications can already be observed in climate science. The 
picture that emerges is one where climate models can be enhanced by supplementing or 
even replacing some of its parts by machine learning approaches, while other parts will 
retain “traditional” methods, leading to a mix of data science and physics-based model parts. 

Finally, I will relate those findings to similar research in biology (Canali 2016, López-Rubio & 
Ratti 2019) to show that machine learning appears to be another powerful tool in the toolbox 
of many scientists in different disciplines. The same should be expected for the future of 
climate science.  
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Interdisciplinarity and Scientific Practice 
Friday, Parallel Session 1, 14:30 – 16:30 

19 
Challenges and Opportunities in the Publication of Global-scale, High-
resolution Climate Model Outputs 
Ionut Iosifescu Enescu1, Gian-Kasper Plattner1, Dirk Nikolaus Karger1, David Hanimann1, 
Dominik Haas-Artho1, Martin Hägeli1, Niklaus E. Zimmermann, Konrad Steffen1,2,3 

1Swiss Federal Institute for Forest, Snow and Landscape WSL, 2École Polytechnique Fédérale de Lausanne EPFL, 
3ETH Zurich 

EnviDat is the environmental data portal of the Swiss Federal Research Institute WSL 
offering a wide range of support services for research data management and data 
publication [Iosifescu et al. 2018, 2019]. It actively implements the FAIR (Findability, 
Accessibility, Interoperability and Reusability) principles, offering formal publication of 
research data with proper citation information and Document Object Identifiers (DOIs).  

The publication of global-scale, high-resolution climate model outputs poses major 
challenges for our portal in its current setup, but also opens up new exciting opportunities. 
Recently, the “climatologies at high resolution for the Earth’s land surface areas (CHELSA)” 
products are being made available through EnviDat. CHELSA provides free climate data at 
1km resolution for various time periods as documented in Karger et al. (2017). 

The first EnviDat challenge for the publication of such global-scale climate models’ outputs is 
their size. Terabytes of data are being produced for each CHELSA version and the size is 
expected to increase to petabytes. Moving towards the publication of Singularity containers 
and additional resources that would allow to reproduce the actual research data represents 
a possible, albeit limited solution. 

The second EnviDat challenge is related to the versioning of such climate model outputs, as 
DOI-ed datasets can no longer be deleted and each version of the data must be kept, in 
principle, forever. Consequently, workflows and technical solutions will also be needed for 
minimizing DOI-ed data redundancy.  

The third EnviDat challenge is related to the visualization of the model outputs directly from 
a publishing portal. The direct map-based visualization of climate model outputs in an 
embedded WebGIS platform are novel requirements for environmental data publication. 

Finally, in the above challenges lie also major opportunities for the community and a portal 
such as EnviDat. Significantly improving the publication and on-demand visualization of 
future climate data model outputs is one of our aspirations to support the community. 
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20 
Situated knowledge and climate services: miscellaneous scales and 
levels of interpretation, using physical observations and data science 
Mélissande Machefer1, Arthur Brun2 

1Lobelia by isardSAT, 2Paris Nanterre University 

Climate science often studies large-scale spatio-temporal phenomena depicted by long data 
records, many of which are now available from Earth Observation satellites on a recurrent 
basis. Data-dependent models are particularly good at generalising from high dimensional, 
heterogeneous and multi-sources information. The exploitation of these observations with 
data science as opposed to physical modeling  is game-changing for operationalising 
climate services combining various study scales. In this sense, the panel of addressable 
environmental science problems requires a deep understanding of the involved phenomena 
to ensure the usefulness of data-driven methodologies. 

Defining the physical and usage boundaries of the problem must respectively occur in 
collaboration with experts of the field and beneficiaries of the project. Considering that each 
of these agents acquaints with different contextual values, adopting an inducting risk view 
[Parker W. 2019] can mitigate the avoidance of cascade of uncontrolled biases which can 
arise from different nodes in the development chain and interpretability of the results. 

Operational choices with data science allowing the automatic portability of the models 
across transversal use cases enable a pioneering “bird’s view” for large-scale phenomena 
whilst this global framework should also answer the granularity needs of the local 
beneficiaries for validation. However, all involved actors (researchers, data scientists, 
software developers, end-users ..) exhibit a pre-existent space of knowledge (in the sense 
that each and every actor’s knowledge comes from a positional perspective), or, as D. 
Haraway puts it, a situated knowledge, influencing their own requirements of goodness of fit. 
This paradigm highlights the need of situating the frame of subjectivity of each agent. 

To which extent can the large scale results predicted with data-dependant models support 
decisions with the risk of  “known unknowns” and taking into account “situated knowns”? 
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How does this paradox challenge the relevance of on-demand services for a large 
community of heterogeneous end-users?  

21 
Multilingual Structured Climate Research Data in Wikidata - The 
Community Perspective 
Cristina Sarasua1, Daniel Mietchen2 

1University of Zurich, 2School of Data Science, University of Virginia 

Empirical sciences experience a transformation enabled by a myriad of technological 
solutions that facilitate collecting, sharing and analyzing large- and small-scale research 
data. Citation networks can be mined, scientific workflows can be reproduced and extended, 
and data-driven search portals allow scientists to dive into a sea with millions of data sets. 
While technology is crucial, the success of this transformation heavily depends on social 
change and commitment. At the core of such a social response, the Open Science 
movement promotes values such as participation and collaboration. Tightly connected to 
Open Science, the Free Knowledge initiative advocated by Wikimedia has succeeded in 
bringing scientific output (and general human knowledge) closer to the global population 
through platforms like Wikipedia. Wikidata is a community-supported knowledge base, 
where thousands of volunteers enter, complete, link, monitor and correct data. Wikidata is 
connected to Wikipedia articles and images in Wikimedia Commons, and it can be queried 
as machine-readable Linked Data. In this presentation, we would like to showcase 
Wikidata’s special features in terms of collaborative knowledge management. We will 
demonstrate how ranks and references allow Wikidata to portray a plural reality in which 
contradictory statements might have been published by different sources. We will also 
demonstrate the way federated queries can facilitate data comparison. Moreover, we will 
describe the process that editors follow to address schema and data quality management 
collectively, as well as human-bot cooperation. We will also talk about the possibility of 
transferring many of Wikidata’s features to self-organized communities via Wikibase. 
Through concrete examples and descriptive statistics, we aim to show the benefits that a 
community-based data management cycle can provide to many disciplines, including the 
field of Climate Research.  

22 
Multilingual Structured Climate Research Data in Wikidata - The Data 
Perspective 
Daniel Mietchen1, Cristina Sarasua2 

1School of Data Science, University of Virginia, 2University of Zurich 

Climate research — like research in general — takes place in a sociotechnical ecosystem 
that connects researchers, institutions, funders, databases, locations, publications, 
methodologies and related concepts with the objects of study and the natural and cultural 
worlds around them.  

Mechanisms for describing concepts related to climate research are growing in breadth and 
depth, number and popularity. In parallel, more and more climate-related data — and 
particularly metadata — are being made available under open licenses, which facilitates 
discoverability, reproducibility and reuse, as well as data integration. 
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Wikidata is a community-curated open knowledge base in which concepts covered in any 
Wikipedia — and beyond — can be described in a structured and FAIR fashion that can be 
mapped to RDF and queried using SPARQL as well as various other means. Its community 
of over 20,000 monthly contributors oversees a corpus of currently over 80 million ‘items’ for 
concepts that are linked amongst each other, to external databases or to specific values via 
over 7000 'properties'. Items and properties have persistent unique identifiers, to which 
labels, descriptions and dedicated lexemes and their forms and senses can be attached in 
over 300 natural languages.  

A range of open-source tools is available to interact with Wikidata — to enter information, 
curate and query it. In this presentation — available via https://github.com/Daniel-
Mietchen/events/blob/master/data-science-in-climate-and-climate-impact-research.md — we 
will outline a range of tools that allow to explore Wikidata content through frontends tailored 
to specific communities. In particular, we will take a look at Scholia, which is available via 
https://tools.wmflabs.org/scholia/ and allows to generate and explore scholarly profiles of 
authors, institutions, funders and other parts of the research ecosystem, as well as of the 
world in which it is embedded, from geomorphological features to economic indicators and 
environmental policies, from natural ecosystems and disasters to biogeochemical cycles. 
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Modeling and Representation 
Thursday, Parallel Session 2, 14:30 – 16:30 

23 
(How) can machine learning be used for predictive modeling of the Earth 
system? 
Benjamin Stocker1 

1ETH Zürich 

We have arrived in an era of big environmental data. Yet, this massive increase in the 
wealth of data has not translated into a comparable progress in our ability to predict the state 
and functioning of the Earth system under future conditions. This unsolved prediction 
challenge is particularly pressing in terrestrial ecology and the science of terrestrial 
biogeochemical cycles, where it is underpinned by the fact that ecosystems are now 
subjected to conditions that lie well outside the domain (climate and CO2) in which they 
established and have evolved and for which we have observational data from the past. 

Does this suggest that the promise of big data cannot materialize to solve challenges in 
environmental and Earth system science? Does this invalidate the contention that pure 
empirical approaches can make theory obsolete, given sufficient data (Anderson, 2008)? Or 
have we not yet found the right approaches to effectively translate information into 
understanding of the Earth system? 

Using the experience from my own work, I will discuss examples of research challenges in 
terrestrial ecosystem modeling that are amenable to solutions relying on big data and 
machine learning (ML) and examples where such approaches are prone to failure. I argue 
that theory and physical constraints cannot be superseded, but should be embodied in data-
driven methods. I argue that addressing the following questions will be fruitful for expanding 
the scope of ML methods in Earth system sciences:  

What are characteristics of problems where ML holds particular promise? 

How can we use the potency of ML for finding patterns between variables and use this 
information in a predictive framework (e.g., an Earth system model)? 

How can we lower the bar for the implementation of data science methods in Earth system 
sciences? 

24 
Building a Seasonal Earth System Model Emulator for local temperature 
Shruti Nath1,2, Quentin Lejeune1, Lea Beusch2, Carl Friedrich Schleussner1, Sonia 
Seneviratne2 

1Climate Analytics, 2ETH Zurich 

Emulators are statistical devices that derive simplified relationships from otherwise complex 
climate models.  Their unique ability to cheaply reproduce additional model realisations 
allows free exploration of model parameterizations, climate sensitivities as well as future 
climate scenarios. A recently developed Earth System Model (ESM) emulator, MESMER 
(Beusch et al. 2019), uses pattern scaling to provide spatially resolved yearly temperature 
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values from global mean temperature values. Through a novel innovation term, MESMER is 
furthermore able to represent internal climate variability, yielding a convincing imitation of the 
interannual variability of a multi-model initial condition ensemble. The work presented here 
extends MESMER’s framework to have a seasonal downscaling module, so as to provide 
spatially resolved monthly temperature values from global mean temperature values. This is 
achieved by training a harmonic model on monthly ESM outputs in order to capture seasonal 
cycles and their evolution with changing temperature. Four ESM runs from CMIP5, RCP 8.5 
are used with ensemble members split into training and test sets in a two to one fashion. 
Once the mean seasonal cycle is sufficiently emulated, an additional variability term is 
added to allow for some stochasticity and hence, prediction of extreme monthly climate 
events. This variability term maintains serial correlation between months through an Auto-
Regressive feature.  The biases of the seasonal downscaling module are evaluated in terms 
of spatial and temporal evolution.  By scrutinising the change in biases along the 
temperature distribution, physical processes e.g. ice-albedo feedbacks poorly represented 
within the model are moreover contemplated.  Outputs of this emulator are expected to 
provide impact assessment models with spatially and temporally resolved data for future 
scenario exploration.  

25 
Can Machines Learn Convection? The epistemic implications of 
machine-learning parameterizations in climate science 
Suzanne Kawamleh1 

1Indiana University 

Scientists and decision makers rely on climate models for predictive insight concerning 
future climate change, particularly extreme events. However, many physical processes 
which are key to accurately predicting extreme events are indirectly represented in the 
model using physical parameterizations. Scientists are exploring and successfully using a 
machine learning approach to replace physically-based parameterizations with neural 
network parameterizations (NNPs).  

I analyze the epistemic implications of the shift from physically-based to data-driven 
parameterization schemes. I argue that the training of a NNP on a previously-tuned high-
resolution model (1) introduces an additional degree of freedom between the output and the 
observational data which contributes to the epistemic opacity of NNPs and (2) increases 
parametric uncertainty. Given the sensitivity of model projections (and their reliability) to 
parameterization schemes, I show that increased parametric uncertainty has negative 
implications for the accuracy and reliability of model projections. This is supported by the 
repeated failure of NNPs to successfully generalize outside the training data set. 

The improved representation of model processes is one important way of improving model 
performance. The failure in NNP generalizability indicates that learning the quantitative 
relations that hold between climate variables is not adequate for representing the physical 
processes behind the output data. The direct or indirect representation of a process plays a 
crucial role in supporting model projectability or generalizability. The very representation of 
processes adds significant and irreplaceable value for the reliability of climate model 
predictions. 

I conclude that NNPs cannot reap the predictive advantages of high resolution models while 
leaving out the key reason for their improved performance—the explicit and improved 
representation of sub-grid processes that govern model predictions. Rather, the adoption of 
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NNPs negatively impacts the way scientists interpret and manage the substantial 
uncertainties associated with climate model parameterizations, thus undermining the 
accuracy and reliability of model projections. 

26 
The role of machine learning in site-specific wind turbine power curve 
prediction 
Sarah Barber1 

1University of Applied Sciences Rapperswil 

The accurate prediction of the power production of a wind turbine at a particular site is 
important in both the planning and operation phases; however, the standard power curve 
binning method is not specific to the atmospheric conditions at the site. Machine learning 
can be used for improving site-specific prediction of power curves, for example by applying 
regression trees to measured atmospheric conditions such as wind speed, turbulence 
intensity and shear factor.  

This work starts by discussing some examples of applying regression trees to power 
predictions. The first example involves creating a set of 8,000 ten-minute long aero-hydro-
servo-elastic simulations of the NREL 5MW reference wind turbine at a random combination 
of hub-height wind speeds, turbulence intensities and shear factors using cloud computing 
with the software ASHES. A regression tree with maximum depth of eight and optimised with 
Adaptive Boosting is trained using a random selection of half of the data. For a set of 50 
random test cases, the Root Mean Square Error of the predicted power compared to the 
simulated power is found to be three times smaller than for the standard power curve 
method of binning. The second example applies the method to real measurement data from 
a wind farm in Brasil. The same method was applied, and the Root Mean Square Error of 
the predicted power compared to the simulated power is found to be 1.6 times smaller than 
for the standard power curve method of binning. The reduced accuracy compared to the first 
example is due to the non-uniform distribution and limited range of atmospheric conditions in 
the real wind farm.  

Next, the suitability of applying machine learning to wind turbine power prediction in general 
is discussed, particularly considering if it can be used equally well for understanding as for 
prediction. 
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5. Social Activity 

Thursday, 18.00 – 18.30, in the zoom meeting room of the keynote sessions. 
 
The social activity will give you the opportunity to network with other participants 
from the workshop. To participate, just stay in the zoom meeting room after the 
keynote. We will then create break-out rooms with three to four participants and give 
you the chance to have informal talks for about 10 minutes before we regroup the 
participants. The goal is to give you the chance to meet other people from other 
institutes and potentially other disciplines such that you can connect later on and 
discuss areas of mutual interest.  
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