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Summary 

European beech (Fagus sylvatica L.) is the most abundant broadleaf tree species in Central Europe. 

Understanding the processes that drive growth of F. sylvatica is critical to predict future dynamics in 

natural- and primeval- beech forests under climate change. In this study we analyzed the effect of climate 

and competition on radial growth of beech in the Uholka-Shyrokyi Luh massif in southwestern Ukraine, 

the largest primeval beech forest reserve of the world. Yearly radial growth data from 249 increment cores 

was combined with climatic data extracted from the 1-km resolution CHELSAcruts climate dataset to 

assess the sensitivity of beech trees to climate. To represent the combined effect of precipitation and 

temperature we computed the climatic water balance for each month and each plot. We then calculated 

bootstrapped correlation coefficients for each individual tree-ring chronology and all climatic variables 

(maximum temperature, minimum temperature, precipitation, and climatic water balance) in order to 

select the most influential climatic parameters subsequent mixed-effects modelling. To test for an effect 

of competition on growth and climate sensitivity we calculated a spatially-explicit competition index based 

on the data from the terrestrial inventory. Assuming little to no changes in competitive status over the last 

two decades, we fitted an exponential decay function to mean BAI and competition for the period of 1989-

2009. We defined the y-intercept as the growth potential (expected growth under no competition) and 

calculated the competition index corresponding to a 50% decrease in growth. We then created two 

subsamples from the data grouping trees with competition values above or below the calculated threshold 

respectively. Finally, we used linear mixed-effects models to model basal area increment as a function of 

tree size and climate. The same model was fitted to the two competition subsamples to evaluate potential 

differences in climate sensitivity. 

Our results show that growth of beech was only slightly sensitive to climate. Tree size was the most 

influential factor explaining a substantial part of variance in basal area increment. Among the modelled 

climatic variables, winter temperature had the strongest positive effect on growth. Moreover, trees 

benefitted from elevated summer temperatures and reduced summer climatic water balance, suggesting 

that drought is not an important factor limiting the growth of beech in the study area. These results 

indicate that projected climate change is likely to have a beneficial effect on the growth of beech in the 

near future. We observed a significant interaction between tree size and the effect of summer climatic 

water balance on growth, suggesting that larger trees benefit more from high moisture availability than 

smaller trees. Trees experiencing high levels of competition were also generally smaller and grew less 

vigorously than trees experiencing little competition. For trees experiencing high levels of competition, 

growth was less significantly correlated to climate than across the sample of low competition trees. 

However, we found no proof of growth reactions to climate varying systematically with the level of 

competition.
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1 Introduction 

Terms such as natural-, virgin,- or primeval-forest are frequently used to describe forest that developed 

with minimal anthropogenic influence (A. Nagel et al., 2013). Even though natural forests are composed 

of the same species mixture as primeval- or virgin- forests, age structure or abundance of specific species 

tend to differ from observations in primeval forests (Parviainen, 2005). Because these forests have 

developed in the absence of human influence, they provide valuable insight into natural processes such as 

forest dynamics, tree demographics, species composition, and growth under natural competition (Foster 

et al., 1996; Brändli & Dowhanytsch, 2003; Commarmot et al., 2009). Natural forests are characterized by 

the presence of all development stages and high structural heterogeneity. In contrast to managed forests 

where trees in a stand usually belong to the same age-cohort, natural forests contain trees of all ages and 

sizes that may appear throughout the entirety of the forest, leading to a small-scale mosaic of different 

development stages shaped by natural disturbances (Korpel, 1995). Due to the absence of management, 

very large trees are more abundant and high amounts of deadwood are observed more frequently than in 

managed forests (Commarmot et al., 2005; A. Nagel et al., 2013).  

Historically, the forests of Europe have been under strong pressure by human exploitation and have 

provided many of the essential goods and services for human development. This strong dependence on 

forest products in the past led to widespread overexploitation of forests throughout Europe. It was not 

until the 18th century that the notion of “sustainable forest management” emerged, mostly as a measure 

to achieve long-term sustainable timber production. Coniferous species have long been the focus of this 

effort. More recently, management practices have evolved and now aim to transform conifer 

monocultures into more structured forests and increase natural regeneration. In particular, the promotion 

of regeneration of European beech (Fagus sylvatica L.) is widely supported by forest practitioners. Beech 

is the most abundant and widespread broadleaf tree species in Central Europe (Fig. 1). Due to its strong 

relative competitiveness, it dominates extensive forested areas throughout Europe within its ecological 

range (Peters, 1997). Beech is characterized by exceptionally high shade tolerance during early life  and 

tends to form monodominant stands with a dense closed canopy (Helliwell, 2012). Because of the high 

tolerance for shade of beech seedlings and saplings, regeneration can take place under an almost-closed 

canopy. The pre-established regeneration can survive in deep shade for a long time and can react swiftly 

to changing conditions such as additional light influx, caused by new openings in the canopy. However, it 

frequently develops a shallow root system that makes it susceptible to drought (Peterken & Mountford, 

1996; Köcher et al., 2009). Consequently, beech suffers much higher losses than most other species in 

years with strong summer drought (Packham et al., 2012). Because of the high abundance and importance 

of beech for central European silviculture, concerns have been raised as to, whether beech will maintain 

dominance and its vigorous growth within its current range. As climate projections generally predict 

increasing temperatures, decreasing precipitation, and resultant increases in drought frequency and 

severity, beech may lose its competitive advantage and be replaced by more drought tolerant species. It 

therefor seems likely that future changes in climate will have a strong effect on beech, particularly at the 

southern extremes of its range (Peñuelas et al., 2008). However, little is known about the reaction of beech 

to climate change in forests at the eastern edge of its range where growth may be limited by low summer 

temperatures rather than drought.  
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Inter-tree competition is an important driver of forest dynamics (Kunstler et al., 2011). Where growth is 

limited by water and/or light, trees compete for these resources. Thus, trees of different sizes and 

competition status may differ in their reaction to climate (Sanchez-Salguero et al., 2015). Forest structure, 

climate and site conditions influence the growth of trees in a way such that growth of neighboring trees 

can be highly variable. This effect is especially pronounced in natural forests where trees of different ages 

and sizes compete for light and resources. Understanding the relative contribution of competition and 

climate to growth is crucial to accurately estimate future forest dynamics under climate change (Lindner 

et al., 2010). 

To better understand the dynamics and processes influencing growth of European beech in natural beech 

forests, we combined growth data from an extensive tree-ring dataset with forest inventory data covering 

the entire Uholka-Shyrokyi Luh primary forest reserve. Taking advantage of this unique dataset we aim at 

providing new insights into the growth and sensitivity to climate of European beech in primeval forests in 

southwestern Ukraine. Specifically, we addressed the following research questions:  

1) What are the long-term growth trends of F. sylvatica in the Uholka-Shyrokyi Luh primeval forest 

reserve?? 

2) How do tree size, competition, and climate influence radial growth of F. sylvatica? 

3) Is there a difference in climate sensitivity between trees experiencing different levels of 

competition?  

Fig. 1 Distribution map of F. sylvatica. EUFORGEN 2009, www.euforgen.org 
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2 Study area 

One of the largest protected areas in Eastern Europe is the Carpathian Biosphere Reserve (CBR) situated 

in the Eastern Carpathians (Fig. 2). Originally established in 1968 as a nature reserve, it became part of the 

UNESCO World Network of Biosphere Reserves in 1992. The CBR is made up of 8 separate massifs covering 

a total area of 53,630 hectares. Over 80% (44,100 ha) of the CBR is covered with forests. The CBR covers 

many characteristic communities of the southern slopes of the Carpathians: foothill oak forests (180 - 450 

m.a.s.l.) and mountain beech and mixed forests (450 – 1,000 m.a.s.l.) dominate most of the lowlands, 

whereas the higher altitudes are covered with mixed beech and spruce forests (1.000 – 1,450 m.a.s.l.), 

subalpine crooked woodland (1,450 – 1,800 m.a.s.l.) and alpine meadows (1,800 – 2,061 m.a.s.l.) (UNESCO, 

2011). 

The Uholka-Shyrokyi Luh massif is one of 8 extensive protected areas in the CBR. Located in central 

Transcarpathia, in the southwestern tip of Ukraine it belongs to the beech forest belt on the southern 

slopes of the Krasna mountain range. It spans from 400 to 1,400 m.a.s.l and encompasses the upper basin 

of the Luzhanka, Velyka Uholka, and Mala Uholka rivers (Brändli & Dowhanytsch, 2003). The Uholka-

Shyrokyi Luh was initially established as a “strict nature reserve” in 1968 (Geyer et al., 2009). It consists of 

two distinct administrative zones: Uholka in the south, situated next to the villages of Velyka Uholka and 

Mala Uholka, and the northern Shyrokyi-Luh, which is located around 12 km north of the Shyrokyi Luh 

village (Fig. 2). In 1992, the massif was declared a UNESCO-World Heritage Site. The total declared area of 

11,860 ha, which includes 8,800 ha of natural old-growth forest, makes the Ukrainian Uholka-Shyrokyi Luh 

massif the largest continuous area of its kind in Europe (Brändli & Dowhanytsch, 2003; Commarmot, 2013).  

  

Fig. 2 Location of the Uholka-Shyrokyi Luh protected area. Own adaptation based on Brändli and Dowhanytsch (2003) 
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The topography of the Uholka-Shyrokyi Luh massif is dominated by narrow valleys stretching across the 

landscape. The massif is characterized by fragmented relief, divided into narrow valleys formed by 

mountain streams. Geologically the massif is composed mostly of flysch formations of the Cretaceous and 

Paleogene periods with some Jurassic limestone, calcareous conglomerates, marls, and sandstone (Brändli 

& Dowhanytsch, 2003).  

2.1.1 Climate 

The Uholka-Shyrokyi Luh protected area lies in the Atlantic-continental climatic region of the Ukrainian 

Carpathians in the European temperate zone. The mean annual temperature measured at the 

meteorological station of the CBR in Uholka was 5.7°C. Mean temperature was highest in July with 16.2°C 

and the average January temperature was -6°C. The total mean annual precipitation was 948mm, with 

most of the precipitation occurring during the vegetation period (Brändli & Dowhanytsch, 2003). The 

Walter-Lieth climate diagrams reveal little risk of summer drought due to high precipitation during the 

summer months, an effect that is even more pronounced at higher altitudes (Fig. 3 b). 

2.1.2 Natural vegetation 

Over 96% of the Uholka-Shyrokyi Luh protected area is covered with forests. Around 70 % of the forests 

are beech dominated communities including Fagetum dentariosum and F. asperulosum, forming a 

continuous belt from the lower altitudes up to the timber line. At lower altitudes oak species become more 

competitive and appear in mixtures more frequently. On more elevated and in wetter sites sycamore (Acer 

psudoplatanus L.) competes well with beech. The Shyrokyi-Luh massif is slightly cooler, forming beech 

communities that are more frequently intermixed with Norway spruce (Picea abies H. Karst) and silver fir 

(Abies alba Mill.) (Brändli & Dowhanytsch, 2003).  

Fig. 3 Walter-Lieth climate diagrams for A low (<600 m.a.s.l.) and B high (>1,200 m.a.s.l) elevation plots. 
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2.1.3 Terrestrial sampling 

In 2010 an inventory of the Uholka-Shyrokyi Luh massif was undertaken to assess forest structure and 

dynamics. A total of six survey teams conducted extensive terrestrial sampling over the entire Uholka-

Shyrokyi Luh protected area. Using a non-stratified, clustered random sampling, clusters of two sample 

plots spaced at 100 m apart, were arranged on a systematic grid of 445m x 1,235m for a total of 353 

circular plots of 500 m2 (radius = 12.62 m) within the study area (Fig. 4). Thirty-nine plots were found to 

be outside the forested area, centered in a creek, inaccessible, or considered too dangerous for 

measurement. Hence, a total of 314 sample plots (145 in Uholka and 169 in Shyrokyi Luh) were fully 

assessed and were included in the analysis (Commarmot, 2013; Hobi et al., 2015). 

On each plot all living and dead trees with a diameter at breast height (DBH) above the threshold of 6 cm 

were recorded with an ID as well as a distance and an azimuth from the plot center. Further dendrological 

attributes such as DBH and tree species were also noted. Tree height, upper stem diameter 7m above 

ground, stem-form, and crown length were measured on a random sub-sample of the surveyed trees. In a 

circular 2,500 m2 (radius = 28.2 m) interpretation area around the plot center the degree of crown cover 

and canopy closure were estimated as descriptors of the vertical and horizontal forest structure.  

On 249 of the 314 sampled plots, an increment core was taken from one randomly selected tree with a 

DBH >= 16 cm (Hobi et al., 2015). Each core was taken between 80 to 100cm above ground and 

perpendicular to the slope of the terrain to minimize the presence of reaction wood in the core. Increment 

cores were glued on wooded supports and their surfaces were prepared using a core microtome (Gärtner 

& Nievergelt, 2010).  

Fig. 4 Distribution of the sampling plots in the Uholka-Shyrokyi Luh massif. Blue 
dots represent the plots where an increment core was taken. Total number of 
plots assessed is shown for the two districts separately. Source: Hobi et al. (2015) 
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Tree rings of each core were measured with a LINTAB 3 digital positioning table (Rinntech, Germany) at a 

resolution of 0.01mm (Speer, 2012). The TSAP tree-ring software (Rinntech, Germany) was used for cross-

dating. For increment cores that missed the pith, age was determined by a standard graphical method 

using sheets of concentric circles to estimate the number of missing rings between the pith and the first 

complete tree-ring (Duncan, 1989). To account for the number of years a tree takes to grow to the 

sampling height, 9 and 11 years were added to the cambial age for trees cored at 80 cm and 100 cm, 

respectively (Trotsiuk et al., 2012).  

3 Methods 

3.1 Tree variables  

Individual growth data was obtained from the increment cores collected, measured and crossdated by 

Martina Hobi during her PhD thesis. We received data containing information on the cored trees, 

containing the unique tree ID and other valuable information such as bark thickness and an estimate of 

tree age based on the measurements taken on the increment cores. It also provides the year until which 

an individual core was successfully cross dated, that allow for the selection of only the time periods when 

cross dating of the individual trees is considered accurate. We received plot-level data that included 

location of the plot and topographical features, as well as stand level forest attributes such as stem 

number, basal area, and standing wood volume. Furthermore, we were provided with a dataset containing 

the diameter and relative position of each tree in relation to the plot center given in distance and azimuth 

of each tree measured during the 2010 terrestrial inventory. From this data we were then able to estimate 

present levels of competition for each cored tree. 

Due to low quality of the first increment core, on some of the 249 plots, additional cores were taken. To 

achieve a more homogenous sample structure only the best chronology of the cores on each plot was 

considered in further analysis leading to 249 cores assessed in our study. Because beech is a diffuse porous 

species and very shade tolerant, cross dating is notoriously difficult to do and prone to mistakes. Increment 

cores taken from beech often exhibit very narrow or even missing rings that make it difficult to match a 

year-ring to a specific calendar year (Grundmann et al., 2008). This may result in the tree ring chronologies 

that can be safely dated back only to a specific year, where a problem arises. To avoid mismatches of tree-

ring and climate data, the entire dataset was reduced to only the year rings that were considered as 

reliably cross-dated. For 48 of the 249 trees reliable cross-dating was not possible. Excluding these cores 

led to a sample of 211 cores with a total of 20,230 reliably cross-dated year-rings. 
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3.1.1 Tree-ring chronology development 

Individual raw tree-ring width series were detrended using the detrend function from the dplR package 

(Bunn, 2008). According to Fritts (1976) we applied conservative detrending by fitting a negative 

exponential curve to the individual growth-series. However, visual inspection of the negative exponential 

detrending procedure showed a complete mismatch, with most of the trees exhibiting increased tree-ring 

width with age rather than the expected decrease in tree-ring width over time. Therefore, this approach 

was discarded. As an alternative, we used a more flexible approach by using a cubic smoothing spline with 

a frequency response of 0.5 at two-thirds the length of the series (Cook & Peters, 1981). The standardized 

ring-width index (RWI) for each year-ring was then calculated by dividing the measured values by the 

corresponding value from the fitted growth curve.  

Because of the geometrical constraints of increasing wood volume with increasing stem diameter, basal 

area increment (BAI) is a biologically more meaningful predictor of growth than tree ring width alone 

(Biondi & Qeadan, 2008). We computed BAI for each tree using the BAI.out function from the dplR 

package. This function starts with a circular approximation of the basal area of the tree based on diameter 

measurements in the field, subtracts bark thickness, and then calculates yearly growth increment starting 

with the outermost ring. This approach showed more promising results than using the alternative BAI.in 

function due to many trees having rotten cores that hindered the assessment of the distance to the tree 

center (pith).  
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3.1.2 Competition index 

To model inter-tree competition, we computed a competition index (CI) for each of the cored trees. For 

that purpose, several options for the competition index were considered. In their recent paper, Kahriman 

et al. (2018) distinguish between two main types of competition indices: distance-dependent and distance-

independent ones. Distance-independent competition indices are not spatially explicit and can be seen as 

stand level attributes of the observed forest. However, distance-independent CI’s such as stand-level basal 

area or stem number can only be used as a proxy for density if the stand is even-aged and dominated by 

horizontal competition. It also fails at representing small scale gaps or canopy openings and was therefore 

not further considered. 

Distance-dependent CI’s are spatially explicit, different for each individual tree, and require knowledge of 

the distance between the focal tree and any potential competitor. They can further be subdivided into 

distance-dependent CI’s with fixed or with a flexible competitor inclusion radius. Since the plots evaluated 

for this study were relatively small (radius of 12.6 m) and there was no information available about trees 

outside the plot boundary, we decided to use a fixed competitor inclusion radius approach. The CI 

proposed by Hegyi (1974) is defined as:  

𝑬𝒒. 𝟏:   𝑪𝑰 =  ∑
𝑫𝑩𝑯𝒋 

𝑫𝑩𝑯𝒊
 ∗  

𝟏 

𝑫𝑰𝑺𝑻𝒊𝒋
𝒋

 

Fig. 5 Graphical representation of the procedure to calculate individual distance-dependent CI. The black dot represents the plot center 
with the black circle being the plot boundary. The dark blue dot is the focal tree with the competitor inclusion radius of 10 m shown 
as the red circle. Red dots are the included competitors. The size of the dots is proportional to the DBH (in cm). 
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Where CI is the calculated competition index, DBHj and DBHi are the measured diameters at breast height 

of the competitors and the focal tree respectively, and DISTij is the distance between the centers of the 

two observed trees. It can be described as the sum of the distance weighted ratios of DBH of the focal tree 

and its respective competitors, and it is mostly based on the assumption that a large DBH implies high 

competitiveness, implying that large trees exert competitive stress on small neighboring trees. Since the 

cored trees were not necessarily close to the center of the plot, some of the trees had a competitor 

inclusion radius that partly overlapped the outside of the plot. In order to compensate for this 

shortcoming, we introduced a correction factor defined as: 

𝑬𝒒. 𝟐:    𝑭𝒄𝒐𝒓𝒓  =  
 𝑨𝒑

𝑨𝒐
      

Where Fcorr is the correction factor, Ap is constant plot area of 500 m2, and Ao is the area of overlap 

between the competitor inclusion radius and the plot boundary. For each plot, every individual tree was 

mapped using the sp package (Fig. 5). All neighboring trees inside the chosen competitor inclusion radius 

were matched and the distance to the focal tree was calculated. From the list of selected competitors, the 

CI was calculated according to Eq. 1 and subsequently multiplied with the area correction factor (Eq.2) in 

order to account for competitors potentially present outside the plot boundary. 

To find the best possible competitor inclusion radius for further use, CI’s were calculated for competitor 

inclusion radii of 4, 6, 8, 10, and 12 m. We then calculated Pearson’s correlation coefficients of individual 

mean growth over the period of 1989-2009 and the competition values for each of the competitor 

inclusion radii. Correlation of growth to the calculated competition index increased with increasing 

competitor inclusion radius (Annex 1). However, since the 12m alternative was linked to considerable 

uncertainty stemming from some very high area correction factors, we decided to only consider the 10m 

radius CI in all further analysis. 
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3.2 Climate data 

Two of the most widely used global gridded climate datasets are the WorldClim (Fick & Hijmans, 2017) and 

the CRU TS (Harris et al., 2014) datasets. However, these differ strongly in data quality and availability over 

space and time. The WorldClim dataset provides climatic means of a reference period (1960-1990) at 

medium to high spatial resolution (30 arc sec or ca. 1-km resolution). Since these climatologies are neither 

available in yearly nor monthly resolution, they were not suitable for calculating growth-climate 

relationships. The CRU TS dataset, on the other hand, includes monthly climate data (1901 to the present 

day) at a 0.5° resolution (~50x50km). This low spatial resolution strongly limits the representation of 

spatio-temporal processes at a local scale. Since many of the sampled forest plots would lie on the same 

raster pixel, climatic differences between plots would have been ignored. To bridge the gap between 

spatial and temporal resolution, some recent databases use interpolation and a combination of datasets 

to downscale local climate.  

The EuMedClim dataset combines the WorldClim and the CRU TS dataset into a new dataset that provides 

climate series at high spatial and temporal resolutions (30 arc sec or ca. 1-km resolution), including 

monthly, seasonal, and yearly time steps of climate series across Europe and the Mediterranean Basin 

(Fréjaville & Benito Garzón, 2018). EuMedClim data is freely available (http://gentree.data.inra.fr/) as 

gridded yearly data from 1901 to 2014 for each of the 21 climatic variables.  

 

The CHELSAcruts dataset provided by the Swiss Federal Institute for Forest, Snow, and Landscape Research 

(WSL), offers three climatic variables: monthly precipitation, monthly mean of daily minimum 

Temperature, and monthly mean of daily maximum temperature in a 1km spatial resolution (Karger et al., 

2017). All climatic variables are available in a monthly resolution and directly downloadable (http://chelsa-

climate.org/downloads/) in Tiff-format. Since many of the climatic variables now also provided by the 

EuMedClim database were not yet available at the beginning of this study, the CHELSAcruts dataset was 

deemed most suitable for our analyses  

Using the R statistical language, the entire CHELSAcruts dataset was downloaded for the period 1901 to 

2009 (3924 climate layers: 109 years * 12 months * 3 variables). Because of the file size of around 100Mb 

for each of the climate layers, each individual layer was downloaded and while in memory, cropped to the 

extent of the relevant Ukrainian district, effectively reducing the size of the entire dataset to less than 

200Mb. The climate data was subsequently loaded into R as a raster-stack using the raster package. Since 

the center coordinates of the plots were provided in UTM 34, they were transformed into a Spatial-Points-

object and then projected to WGS 84 to match the projection of the climatic data. To extract the climate 

time series for each individual plot we used the extract function from the raster package. Since this 

operation proved to be computationally intensive, each of the raster layers was transformed into one row 

of a large matrix. By creating an ID-raster-stack, with the same extent as the original raster, and applying 

the extract function to the ID-raster-stack, we extracted the ID of the climate variables. We were then able 

to extract the climate data from the matrix by tabular indexing in a more efficient way. Climate data was 

merged with the tree data based on the individual ID and then restructured using the dplyr package in 

order to have each row represent one single year with all variables as columns.  
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To assess the influence of water deficits on radial growth we computed the monthly Climatic Water 

Balance (CWB) for each plot. To estimate the monthly potential evapotranspiration, we used the 

Hargreaves function from the SPEI package. Using latitude as a proxy for radiation, the Hargreaves 

function provides an estimate of monthly potential evapotranspiration based on monthly minimum and 

maximum temperatures and a vector of monthly precipitation (H. Hargreaves & Samani, 1985). Monthly 

climatic water balance was then calculated as:  

𝑬𝒒. 𝟑:  𝑪𝑾𝑩 =  𝑷 –  𝑬𝑻𝟎 

Where CWB is the monthly Climatic Water Balance, P is the monthly precipitation sum, and ET0 is the 

monthly potential evapotranspiration as calculated with the Hargreaves function.  

 

3.3 Statistical analysis 

All statistical analyses were performed using the R software for statistical computing, version 3.5.1 (R Core 

Team, 2017). The trends in the climate data were assessed for the periods of 1901-2009 and 1981-2009 

using the nonparametric Mann-Kendall trend-test as provided by the zyp package. The overall growth-

trend was assessed by plotting annual means of tree-ring width and basal area increment. Trends were 

assessed for the periods of 1900-2009 and 1981-2009 using the Mann-Kendall trend-test. To evaluate the 

age effect on radial growth, we realigned growth values according to their cambial age and calculated 

mean growth values for each 1-year age class. Trends in mean growth were then assessed using the Mann-

Kendall trend-test.  

Since it was not possible to compute past competition – as this would have required increment cores from 

all competitors – we assumed little to no changes in competitive status of trees over the last 20 years 

(1989 - 2009). This timespan was chosen as a trade-off between consistency of the competition index and 

sample size and all further calculations involving competition refer to the period 1989 - 2009. We then 

calculated mean BAI values of each individual tree over the timespan and applied linear regression to the 

log-transformed growth values and the CI. Following the methodology proposed by Piutti and Cescatti 

(1997), we defined the intercept of the regression line as corresponding to a value for average growth 

under ideal circumstances (i.e., no competition). For repartition into the two competition classes we 

applied a threshold to the CI-value corresponding to a mean growth decrease of 50 % due to competition 

and the data was attributed to the “Low” (CI <= 1.35, n = 151), or “High” (CI > 1.35, n = 60) competition 

classes. 

To select the most meaningful variables for the mixed effects models, we calculated 1000-fold 

bootstrapped Pearson’s correlation coefficients for each of the climatic variables using the dcc function 

of the treeclim package (Zang & Biondi, 2015). Correlation coefficients of BAI and the monthly (July of 

the year prior to ring formation to September of year of ring formation), as well as seasonal climate 

(previous Summer, previous Fall, Winter, Spring, and one additional Summer) were computed for each 

core individually. The correlation coefficients were then plotted as boxplots to select the variables with 

the strongest influence on growth for further analysis. Using the same approach, we calculated individual 

correlation coefficients for the period of 1989-2009 and plotted boxplots illustrating the distribution of 

individual correlation coefficients within each of the two competition subgroups. 
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We used linear mixed effects modelling to quantify the effects of climate, tree size, competition, and their 
interactions on growth. Following the methodology proposed by Zuur et al. (2009) we started by building 
a model containing a selected set of predictors as fixed effects. Variable selection was done based on the 
results of the correlation analysis and the correlations between the climatic variables. Since the effect of 
competition on the climate-growth relationship was more pronounced in the seasonal climatic variables 
than in the monthly values, we only integrated the seasonal values in the model. The final model was: 
 

𝑬𝒒. 𝟒 log(𝐵𝐴𝐼 + 1) ~ 𝛼 + 𝛽1(𝑆𝑖𝑧𝑒)+ 𝛽2(𝐶𝑊𝐵) + 𝛽3(𝑇𝑚𝑎𝑥) + 𝛽4(𝑆𝑖𝑧𝑒) × (𝐶𝑊𝐵) + 𝜀 
 
Where α is the intercept, ε represents the error term, and β1-4 are the parameters of the fixed components 
namely, tree size, climatic water balance, maximum temperature and an interaction term linking tree size 
to the climatic water balance. Specifically, we used spring climatic water balance, climatic water balance 
of two most recent summers, winter, spring and summer maximum, temperature as well as summer 
maximum temperature of the year prior to ring formation. To determine the relative effect strengths of 
the modeled climatic variables climatic variables were centered and scaled prior to the analysis. We fitted 
the model over the entire period where climate data was available (1901-2009). To find the ideal random 
structure we built two versions of model with the same fixed structure. One was built using the gls 
function and included only the fixed components, while the other was constructed using the lme function 
from the lme4 package and included a random factor for treeID, which allowed for an individual intercept 
of each increment core (Bates et al., 2015). Models were fitted using restricted maximum likelihood 
(REML). We then compared the Aikake Information Criteria (AIC) – defined as twice the difference 
between the value of the likelihood (measure of fit) and the number of parameters (the penalty for model 
complexity) – of the two models in order to select the best random structure (Zuur et al., 2009). The 
random intercept models were superior to the generalized linear models and were selected for further 
analysis. To check for changes in climate response, we then refitted the same model including only the 
most recent 20 years (1989-2009). We then modeled the subsets of low- and high- competition trees over 
the period of 1989-2009 separately to check for differences in growth response between competition 
classes. Finally, we calculated the marginal R2 (proportion of variance explained by the fixed terms) and 
the conditional R2 (proportion of variance explained by the combination of fixed and random terms) from 
the final model objects using the r.squaredGLMM function from the MuMin package according to 
Nakagawa and Schielzeth (2013). 
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4 Results 

4.1 Growth trend 

Over the last 100 years mean tree-ring growth has significantly increased across the study area (Fig. 6a). 
The growth trend reveals an increase in mean tree-ring width of 0.358mm over the last century. However 
only 27% of individual trees showed a significant (p<0.05) increase in growth time. Over the climatic 
reference period of 1981-2009 the slope was even stronger, however not significant. The trend in BAI was 
also evident. Mean basal area increment of trees has increased by 16.3cm2 over the period of 1901-2009 
(Fig. 6b). The highly significant trend suggests that mean BAI of trees in study area has more than doubled 
over the last century. 62 % of trees exhibited a significant positive growth-trend. The trend over the last 
30 years failed to achieve significance but also indicates increasing growth rates. 

  

Fig. 6 General trend of a) mean tree ring width and b) basal area increment. Black lines represent mean growth per year, with 
the standard error as blue ribbons (not displayed when sample depth <=1). The gray areas represent sample depth. Orange (and 
red) lines are the trend lines over the period of 1900 - 2009 (and 1981 - 2009), respectively. Estimated changes in mean growth 
over the entire period and significance values of the growth trends are displayed in the upper left corners.  
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4.2 Age trend 

When plotting individual tree growth in relation to cambial age (age of the year-ring), the effect is reduced. 
One can observe the typical elevated growth values in juvenile trees with the associated rapid decline over 
the first 60 to 70 years followed by a long period of relatively stable growth (Fig. 7a). Interestingly, after a 
short growth depression at ages of 280-300 years, growth continues at similar levels up to very old ages.  

 
Cambial age was linked to a highly significant increase in BAI suggesting that older trees grow faster than 
younger trees. However, due to the high correlation of tree age and size (Annex 2), as well as the 
geometrical constraints of volumetric growth it is difficult to separate the effect of age from the inherent 
effect of tree size on basal area increment. 

Fig. 7 General trend over year ring age in a) mean year ring growth and b) basal area increment. Black lines represent mean growth 
per year, with the standard error as blue ribbons (not displayed when sample depth <=1). The gray areas represent sample depth. 
Orange (and red) lines are the trend lines over the period of 1900 - 2009 (and 1981 - 2009), respectively. Estimated changes in 
mean growth over the entire period and significance values of the growth trends are displayed in the upper left corners. 
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4.3 Climate trends 

The trend lines for mean monthly maximum temperature reveal an increase of 0.42°C over the period of 

1901-2009 and an increase of 1.5°C of over the period of 1981-2009 (Fig. 8a). Annual precipitation sum 

decreased by 23mm over the entire period, but this trend was not significant. Over the last thirty years 

precipitation significantly increased by more than 180mm (Fig. 8b). The trend in climatic water balance 

closely resembled the pattern in precipitation sum (Fig 8c). CWB decreased by 18mm over the period of 

1981-2009 but increased by 116 mm over the last thirty years, though none of these trends were 

significant. 

 
   

Fig. 8 Time-series of a) annual mean maximum temperature, b) precipitation sum and c) climatic water balance for the period 1901-
2009. Black lines are the yearly mean value over all plots. Orange (and red) lines are the trend lines over the reference period of 
1901-2009 (and 1981-2009), respectively. Absolute changes over the respective periods and p-values are indicated on the right 
side. 
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4.4 Growth-climate relationships  

Maximum temperature from previous October to February as well as June maximum temperature was 
positively correlated to radial growth, whereas maximum temperature of the previous September showed 
the inverse effect (Fig. 9a). The distribution of the Pearson’s correlation coefficients reveals high variability 
in individual tree response to climate.  

Tree growth over the period 1901-2009 was relatively insensitive to precipitation. July precipitation of the 
year before ring formation was positively correlated to BAI (Fig. 9c). November and January precipitation 
were negatively correlated to radial growth. Correlation patterns found between tree growth and the 
climatic water balance were similar to the ones observed for precipitation. No immediate detrimental 
effect of drought could be detected as correlations to CWB were generally low during the summer months 
(Fig. 9d). 
  

Fig. 9 Boxplots of the bootstrapped correlation coefficients of basal area increment chronologies and a) mean monthly maximum 
temperature, b) mean monthly minimum temperature, c) precipitation and d) climatic water balance. Months considered were 
June prior to ring formation (-J) to September (S) of the year of ring formation for the period 1901 – 2009. Boxes represent the 
interquartile range and whiskers represent the upper and lower quartiles of the distribution. Outliers are represented as points. 
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Over the period 1901-2009, at the seasonal scale, elevated maximum and minimum temperatures had a 

generally positive effect on growth (Fig. 10a & 10b). Maximum winter temperature had the strongest 

effect and positively influenced radial growth. Except during the winter months, minimum temperature 

appeared to have a stronger influence on radial growth than maximum temperature. 

Growth response to precipitation and the CWB exhibited similar behaviour. Summer precipitation of the 

year before ring formation and spring precipitation during the growth year were both positively correlated 

to growth. Surprisingly, there was no clear correlation between growth and summer precipitation or CWB, 

suggesting that tree growth in the study region is less limited by summer drought than anticipated. The 

low correlation coefficients (mean < 0.2 for all climatic variables) illustrate that tree growth over the period 

of 1901-2009 was marginally sensitive to climate. 

 
 
  

Fig. 10 Boxplots of the Pearson’s correlation coefficients between BAI and seasonal climate. a) maximum and b) minimum 
temperature, c) precipitation and d) climatic water balance for previous summer (June, July, August), previous fall (September, 
October, November), winter (December, January, February), spring (March, April, May) and summer (June, July, August) for the 
period 1901–2009. Boxes represent the interquartile range and whiskers represent the upper and lower quartiles of the 
distribution. Outliers are represented as points. 
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4.5 Effect of competition on growth  

Competition had a significant negative impact on mean basal area increment. The exponential decay fit 

indicates that trees experiencing less competition tend to grow more vigorously (Fig. 11). Mean growth 

under no competition (y-intercept) was estimated to be 34.7 cm2 per year. The threshold for the distinction 

of the two competition classes was set at a CI-value of 1.35, corresponding to a mean annual growth of 

17.4 cm2 per year, or equivalent to 50% of the growth potential (expected growth under no competition).  

Mean DBH of trees under high competition was lower than of the trees under low competition. Trees 

under strong competition not only grew less vigorously but were also generally younger and smaller than 

trees experiencing low levels of competition (Table 2).  

  

Fig. 11 Mean BAI of the cored trees for the period 1989-2009 in relation to the level of competition experienced. The red line is 
the regression line with its y-intercept representing expected mean growth under no competition. The vertical line is the cutoff 
for the competition classes, intersecting the regression line at 50% of potential growth. The equation, the R2-value and p-value 
are indicated in the upper right corner. Note that 5 points with very high CI’s are not shown in the graph. 

Table 1 Variability of tree attributes among the 211 cored trees and within competition classes, showing the 
mean (bold) and standard deviation, of DBH, Age, Competition Index (CI) and basal area increment (BAI).  



Results 
------------------------------------------------------------------------------------------------------------------------------------------- 

25 |  
 

4.6 Effect of competition on climate sensitivity 

Since the competition status of trees was assumed to remain unchanged over the last 20 years, the 

growth-climate relationship was reassessed for the period 1989-2009 for trees experiencing high and low 

competition separately (Fig. 12). The observed patterns closely resemble the patterns observed over the 

period 1901-2009. Maximum July and September temperatures in the year before tree-ring formation 

were negatively correlated to growth. Elevated May, June, and August temperatures were also associated 

with narrow rings, whereas growth was positively correlated to October through March temperatures. 

Precipitation from February through August was positively correlated to basal area increment.  

  

Fig. 12 Boxplots of the correlations of basal area increment chronologies and a) mean monthly maximum temperature, b) mean monthly 
minimum temperature, c) precipitation and d) climatic water balance. Months considered were June prior to ring formation (-J) to 
September (S) of the year of ring formation for the period 1989–2009. Correlations were calculated independently for each competition 
class. Boxes represent the interquartile range and whiskers represent the upper and lower quartiles of the distribution. Outliers are 
represented as points. 
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Examination of the seasonal correlations returned similar results (Fig. 13). Mean maximum summer 

temperature of the year prior to ring formation was negatively correlated to BAI, whereas elevated winter 

and spring temperatures had the opposite effect. Trees under high competition appeared to be less 

sensitive to spring temperature than trees experiencing low levels of competition but were adversely 

affected by elevated winter climatic water balance.  

  

Fig. 13 Boxplots of the correlations between individual basal increment chronologies and seasonal climate. a) maximum and b) 
minimum temperature, c) precipitation and d) climatic water balance) for previous summer (June, July, August), previous fall 
(September, October, November), winter (December, January, February), current spring (March, April, May) and current 
summer (June, July, August) for the period 1989–2009. Correlations were calculated independently for each competition class. 
Boxes represent the interquartile range and whiskers represent the upper and lower quartiles of the distribution. Outliers are 
represented as points. 
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4.7 Mixed effect models  

The results of the linear mixed-effects models show that DBH was the most influential factor in predicting 

basal area increment. The models generally agree well with the results of the correlation analysis. Tree 

growth significantly increased with tree size across all subsamples (Table 2). Maximum temperature of the 

summer before year ring formation was not a good predictor of tree growth, failing to achieve significance 

in any of the subgroups. Elevated winter temperatures were associated with a significant increase in basal 

area increment across all modeled groups. Spring CWB had a significant positive effect on tree growth over 

the period 1901-2009 but showed the opposite effect for the period 1989-2009. Similarly, summer CWB 

was negatively correlated to growth over the entire period, while over the last 20 years, the opposite was 

true, pointing to a change in climate response. There was a significant interaction between DBH and 

summer climatic water balance, indicating that larger trees benefit more from elevated water availability 

during summer than smaller trees. 

  

Table 2 Summary of the fitted linear mixed-effects showing the effect of size and climate on log transformed basal area 

increment of all trees from 1901 to 2009, as well as for all trees and the two competition subgroups for the period 1989-2009.  
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As indicated by the low p-values, maximum summer temperature and CWB of the last year were not good 

predictors of tree growth for trees facing high levels of competition, however they were highly significant 

across the low competition sample. Except for a stronger negative reaction to high spring CWB, trees of 

the high competition subgroup appeared to be less sensitive to climate. Among the competition 

subgroups, the size-CWB interaction failed to achieve significance. 

As indicated by the marginal R2 values, the fixed components of the linear mixed-effects models linking 

growth to tree size and climate, explained 0.27 to 0.42 of total variance. Including the random effect 

significantly increased model fit (REML comparison, p-value < .001). The mixed effects models explained 

0.60 to 0.78 of the variances in tree growth when considering the random effect (conditional R2) and 

highlighted the importance of including the individual tree responses when modelling tree growth. 
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5 Discussion 

Our results indicate a continuous increase in mean radial growth over the period of 1901-2009. The 

plausibility of this growth trend is underlined by observations made by researchers in different forests 

throughout Europe. Pretzsch (1999) found that, especially at lower altitudes, forest inventories and growth 

trend studies frequently reveal an increase in productivity of European forests since the middle of the last 

century. Other recent studies also point to an increase in growth of beech trees over the last century in 

stands across north eastern France (Bontemps et al., 2009; Charru et al., 2010; Bontemps et al., 2012). 

Another study found accelerating stand growth dynamics over the last century. Researchers observed 

increased diameter and volume growth, following similar allometric rules but progressing faster in their 

development (Lebourgeois et al., 2005; Pretzsch et al., 2014).  

The observed trend may have several causes. Firstly, the trend may be related to the size-growth 

relationship, with tree ring width peaking at an early age and basal area increment peaking during 

maturity. Peak basal area increment growth may additionally be delayed by primeval forest dynamics, 

where regeneration takes place under small canopy openings with limited light and young beech trees 

may endure long suppression times until they reach the upper canopy and can grow at their full potential 

(Packham et al., 2012). The relationship between tree size and age is defined by the regime of silviculture 

interventions or natural disturbances in managed- and natural- forests respectively. In typical managed 

forests the age-size relationship is usually strong as equally aged trees within a stand face similar 

conditions in terms of not having to endure long suppression times under a dense canopy. Therefore, the 

age-size relationship can be a useful descriptor of the “naturalness” of forests where natural forests tend 

to have relatively weak age-size relationships. For our sample of trees where age estimation was 

successful, age only explained 31% of the observed variance in DBH illustrating the primeval nature of 

these forests. The finding that even very old beech trees (> 300 years) can still exhibit similar growth rates 

than far younger trees of equal size a useful observation for improving our understanding of forest ecology. 

Secondly, the observed trend in growth may be caused by climate change. Rising temperatures combined 

with sufficient precipitation often result in increased tree growth (Grundmann et al., 2008). The climate 

time-series show a clear increase in air temperature over the last century and an even stronger one over 

the last 30 years. Rising temperatures may have induced a steady increase in tree growth since the early 

20th century, with a rapid increase in the last 20-30 years. Our results show that high winter temperatures 

significantly increased radial growth of beech, possibly explaining a proportion of the observed growth 

trend. Beech is susceptible to leaf damage caused by late frosts, resulting in narrower tree-rings in years 

with strong late frost events (Dittmar et al., 2006). Elevated temperatures may therefore additionally 

benefit beech trees by reducing the frequency of damaging frost events. As a result, climate change may 

give beech the competitive advantage necessary to achieve dominance on new sites in the Carpathians 

previously considered too cold or too wet. Other factors, such as CO2- and N-deposition might also play a 

role in increasing growth rates, but moisture availability has normally a stronger influence on tree growth 

than CO2 and N-deposition (Levesque et al., 2017).  
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Tree size was the most influential variable in predicting basal area increment. Removing the DBH at the 

year of ring formation from the models resulted in very low values of explained variance by the climate 

data alone. The low correlation of growth and climate suggest that the growth of European beech in 

primeval beech forests of Eastern Ukraine is marginally sensitive to climate. In our study, winter 

temperature was the most influential climatic predictor of growth. Over the period of 1901-2009 tree 

growth was positively correlated to summer temperatures and exhibited a negative response to the 

summer climatic water balance. These findings are surprising considering that the sensitivity of beech to 

drought is well documented (Jump et al., 2006; Friedrichs et al., 2009; Roibu et al., 2017). Analysis of the 

two last decades revealed, that high summer temperatures and limited moisture availability now have a 

detrimental, however not significant, effect on tree growth. These findings suggest, that drought may have 

become an increasingly important factor in determining growth.  

Elevated levels of competition were linked to a lower mean growth over the last 20 years. Because of high 

correlations between tree size and competition it was difficult to distinguish between the effect of size 

and competition. The mixed effects models suggest that trees under high competition were less sensitive 

to climate than trees experiencing little competition, as only winter temperature and spring climatic water 

balance were significant predictors of growth for trees under high competition and the effect was slightly 

weaker.  

Tree-ring chronologies contain low frequency variation in growth determined by endogenous tree factors 

(i.e. size, age, competition) that can be removed by detrending the chronologies. Dendroecological studies 

are usually done at a local level where many trees on one plot are cored and individual chronologies are 

detrended and then averaged to compute a mean chronology. The mean residual chronology is then linked 

to the climate data resulting in one single correlation value for each of the considered variables. For this 

study, only one core was taken on each plot making it impossible to build mean chronologies. To 

circumvent this issue, we used high spatial and temporal resolution climate data to analyze growth 

response of beech to climate. Using climate data at lower resolutions would have been problematic, since 

many of the sampled trees would have received their climate data from the same pixel, regardless of 

differences in elevation, slope, and exposition. We calculated correlation coefficients for selected climatic 

variables, treating each chronology individually, taking account of inter-tree variability in the growth-

climate relationship by including a random factor to the mixed effect model. The large difference in 

marginal and conditional R2 of the models highlight the importance of including a random effect 

accounting for endogenous factors influencing growth. 
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6 Conclusions 

We conclude that that beech in the Uholka-Shyrokyi Luh primary forest is only slightly sensitive to climate. 
Correlation analysis yielded generally small correlation and the variability of tree growth response to 
climate was high. The mixed effects models revealed tree size as the most influential predictor of growth, 
highlighting the importance of including endogenous growth factors such as size and/or inter-tree 
competition when modelling tree growth. High winter temperatures resulted in increased radial growth. 
Climatic water balance of the year prior to ring formation was positively correlated to growth indicating a 
time lag in growth response to moisture availability. The growth response to summer temperature 
changed from positive (for the period 1901-2009) to negative (for the period 1989-2009). Conversely, the 
effect of summer climatic water balance became positive for the last 2 decades suggesting that growth of 
beech on the study site may become increasingly limited by drought in the future.  
 
Dendroecological studies combining individual cores at the tree level with data from forest inventories 
may prove a valuable tool to model forest growth dynamics. However, assessing the effect of climate on 
tree growth based on individual tree ring chronologies from distinct plots was difficult as individual tree 
growth response to climate was highly variable. More research is needed to fully understand what drives 
growth of beech at the eastern extent of its range. To utilize the full potential of available forest inventory 
data, it would be beneficial to develop consistent methodologies to link individual growth data extracted 
from increment cores to forest inventory data. To better understand what drives forest dynamics, further 
investigations should extend the methodology to include other tree species and focus on the assessment 
of growth response along ecological gradients. 
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Annex 
A1 Competitor inclusion radius selection 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. A1 Barplot showing the correlation values between mean growth (1989-2009) and the calculated 
competition index. Using a competitor inclusion radius of 10 returned highest correlation values and was 
therefore used in all further calculations. 
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A2 Correlogram for age, size and competition 

Fig. A2 correlogram of size, competition index, and estimated age at the time of coring. Diagonal line shows the histograms for Diameter, CI and 
estimated age. Lower graphs represent scatterplots of each variable pair. The graphs above the diagonal show the respective Pearson’s 
correlation coefficients. 
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A3 R-Code  

########################################### 

##### Data combination and evaluation script #### 

########################################### 

#### Master’s thesis 

#### Author: Julian Muhmenthaler 

#### Date of last change: 26.4.2019 

rm(list=ls()) 

directory <- "C://Users//julianmu//Desktop//Polybox//AAA_MASTER//Rscripts//Final Scripts" 

setwd(directory) 

 

## load libraries 

library(iki.dataclim) 

library(zyp) 

library(cowplot) 

library(reshape2) 

library(ggpubr) 

library(dplyr) 

library(tibble) 

library(SPEI) 

library(Hmisc) 

library(ggplot2) 

library(rmarkdown) 

 

#### Tree data #### 

#complete tree dataset 

tree.data.df = read.csv2("Dendro_249.csv", sep=";", dec=",") 

tree.data.df$index<- NULL 

tree.data.df$ID <- tree.data.df$name 

tree.data.df$bark[is.na(tree.data.df$bark)] <- 0 

tree.data.df$bark <- tree.data.df$bark/100 

#repeat each line 114 (1901:2009) times to make same size matrix 

tree.data.df <- tree.data.df[rep(seq_len(nrow(tree.data.df)), each=109),] 

#add a year column repeating from 1901 to 2009 for each tree 

tree.data.df$Year <- rep(c(1901:2009), times = 249) 

 

#remove unneccessary columns 

tree.data.df$name <- NULL 

tree.data.df$Index <- NULL 

tree.data.df$d7 <- NULL 

tree.data.df$x_cord <- NULL 

tree.data.df$y_cord <- NULL 

tree.data.df$crossdating1900 <- NULL 

tree.data.df$reliable_fq <- NULL 

tree.data.df$gebiet <- NULL 

tree.data.df$kronena <- NULL 

tree.data.df$hoehe <- NULL 

tree.data.df$volderba <- NULL 

 

#adjust data formats 

tree.data.df$bhd <- as.numeric(tree.data.df$bhd) 

tree.data.df$bark <- as.numeric(tree.data.df$bark) 

tree.data.df$hoehemeer <- as.numeric(tree.data.df$hoehemeer) 

 

#### Growth data  #### 

growth.data <- read.csv2("Growth_data.csv", sep=";", dec=",") 

growth.data[1] <- NULL 

# attach growth values  

full.data <- left_join(tree.data.df, growth.data, by=c("ID", "Year")) 
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#### Yearringage and act DBH #### 

full.data$Year <- as.integer(as.character(full.data$Year)) 

 

# add year-ring-age column 

full.data$yearringage <- ifelse(is.na(full.data$altercor), NA, (full.data$altercor + full.data$Year - 2009)) 

 

# add actual diameter column 

act.dim.out <- data.frame() 

for (i in unique(full.data$ID)){ 

  tmp.sub <- subset(full.data, ID == i) 

  for (j in 1:(nrow(tmp.sub)-1)){ 

  tmp.sub$act.dbh[j] <-  ifelse(is.na(tmp.sub$YRG[j]), NA,  

tmp.sub$bhd[1]-(2*tmp.sub$bark[1]/10) - sum(tmp.sub$YRG[(1+j):109],na.rm=TRUE)/10*2) 

 #####  divide by 10 to get cm, multiply by 2 to get diameter 

  } 

  tmp.sub$act.dbh[109] <- tmp.sub$bhd[1]-tmp.sub$bark[1]*2/10 

  act.dim.out <- rbind(act.dim.out, tmp.sub) 

} 

full.data <- act.dim.out 

full.data$act.dbh[full.data$act.dbh < 0] <- NA 

 

#### Competition data #### 

comp.df <- read.csv2("Full_competition_Data.csv") 

comp.df[1] <- NULL 

comp.df$comp.value.10m <- comp.df$ci.10m 

comp.df <- comp.df[c("plotNr", "comp.value.10m", "ci.12m")] 

# attach comp data to full data.frame 

full.data <- left_join(full.data, comp.df , by=c("plotNr")) 

 

#### Climate data #### 

full.data$Year <- as.integer(as.character(full.data$Year)) 

# Load data 

clim.df <- read.csv2("Climate_Data.csv", sep=",", dec=".") 

clim.df$X <- NULL 

#reduce climate data frame to 249 trees in dendro 249 

clim.out <- data.frame() 

for (i in unique(full.data$ID)){ 

  clim.out <- rbind(clim.out, clim.df[clim.df$ID ==i,]) 

} 

clim.df <- clim.out 

 

# Make three seperate data sets for Prec, Tmin, Tmax 

prec.clim <- cbind(clim.df[grepl("prec_",names(clim.df))], ID = as.character(clim.df$ID)) 

tmin.clim <- cbind(clim.df[grepl("tmin_",names(clim.df))], ID = as.character(clim.df$ID)) 

tmax.clim <- cbind(clim.df[grepl("tmax_", names(clim.df))], ID = as.character(clim.df$ID)) 

# bring this to acceptable shape (12 cols for each of the variables) 

# For Precip 

prec.out <- data.frame(Year= integer(0), Jan=numeric(0), Feb=numeric(0), Mar=numeric(0), Apr=numeric(0), May=numeric(0),   

 Jun=numeric(0), Jul=numeric(0),Aug=numeric(0), Sep=numeric(0), Oct=numeric(0), Nov=numeric(0), Dez=numeric(0)) 

for (i in 1901:2009){ 

  temp <- prec.clim[grep(pattern= i , x = colnames(prec.clim))] 

  temp$Year <- i  

  temp$ID <- prec.clim$ID 

colnames(temp) <-c("Jan_prec","Feb_prec","Mar_prec","Apr_prec","May_prec","Jun_prec","Jul_prec","Aug_prec",    

 "Sept_prec","Okt_prec","Nov_prec","Dez_prec", "Year", "ID") 

  prec.out <- rbind(prec.out, temp) 

} 

#prev years 

out.table <- data.frame() 

for (i in unique(prec.out$ID)) { 

  subs <- subset(prec.out, ID == i) 
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  for (j in colnames(subs[1:12])){ 

subs[paste("prev", j, sep="_")] <- c(NA, subs[j][1:108,]) 

  } 

  out.table<- rbind(out.table, subs) 

} 

prec.new <- out.table 

 

#### For Tmin 

tmin.out <- data.frame(Year= integer(0), Jan=numeric(0), Feb=numeric(0), Mar=numeric(0), Apr=numeric(0), May=numeric(0),   

Jun=numeric(0), Jul=numeric(0), Aug=numeric(0), Sep=numeric(0), Oct=numeric(0), Nov=numeric(0), Dez=numeric(0)) 

for (i in 1901:2009){ 

  temp <- tmin.clim[grep(pattern= i , x = colnames(tmin.clim))]/10 

  temp$Year <- i  

  temp$ID <- tmin.clim$ID 

  colnames(temp) <-c("Jan_tmin","Feb_tmin","Mar_tmin","Apr_tmin","May_tmin","Jun_tmin","Jul_tmin","Aug_tmin",    

 "Sept_tmin","Okt_tmin","Nov_tmin","Dez_tmin", "Year", "ID") 

  tmin.out <- rbind(tmin.out, temp) 

} 

#prev years 

out.table <- data.frame() 

for (i in unique(tmin.out$ID)) { 

  subs <- subset(tmin.out, ID == i) 

  for (j in colnames(subs[1:12])){ 

subs[paste("prev", j, sep="_")] <- c(NA, subs[j][1:108,]) 

  } 

  out.table<- rbind(out.table, subs) 

} 

tmin.new <- out.table 

 

#### For Tmax 

tmax.out <- data.frame(Year= integer(0), Jan=numeric(0), Feb=numeric(0), Mar=numeric(0), Apr=numeric(0), May=numeric(0),   

Jun=numeric(0), Jul=numeric(0),Aug=numeric(0), Sep=numeric(0), Oct=numeric(0),  Nov=numeric(0), Dez=numeric(0)) 

for (i in 1901:2009){ 

  temp <- tmax.clim[grep(pattern= i , x = colnames(tmax.clim))]/10 

  temp$Year <- i  

  temp$ID <- tmax.clim$ID 

  colnames(temp) <- 

c("Jan_tmax","Feb_tmax","Mar_tmax","Apr_tmax","May_tmax","Jun_tmax","Jul_tmax","Aug_tmax","Sept_tmax","Okt_tmax", 

"Nov_tmax","Dez_tmax", "Year", "ID") 

  tmax.out <- rbind(tmax.out, temp) 

} 

#prev years 

out.table <- data.frame() 

for (i in unique(tmax.out$ID)) { 

  subs <- subset(tmax.out, ID == i) 

  for (j in colnames(subs[1:12])){ 

subs[paste("prev", j, sep="_")] <- c(NA, subs[j][1:108,]) 

  } 

  out.table<- rbind(out.table, subs) 

} 

tmax.new <- out.table 

 

#### attach climate data 

full.data <- left_join(full.data, prec.new , by=c("ID", "Year")) 

full.data <- left_join(full.data, tmin.new , by=c("ID", "Year")) 

full.data <- left_join(full.data, tmax.new , by=c("ID", "Year")) 

 

#### Make Long Dataset ### 

# REORDER climate variables to have one column with month (reduces amount of columns) 

temp2.df <- setNames(data.frame(matrix(ncol = 9, nrow = 0)), c("Prec", "prev_Prec", "Tmin","prev_Tmin", "Tmax", "prev_Tmax", "Year","ID", 

"m.id")) 
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for (i in unique(full.data$ID)){ 

  tmp.sub <- subset(full.data, ID == i) 

  tmp.out <- setNames(data.frame(matrix(ncol = 8, nrow = 0)), c("Prec", "prev_Prec", "Tmin","prev_Tmin", "Tmax", "prev_Tmax", "Year","ID")) 

  for (j in c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Okt", "Nov", "Dez")){ 

    tmp <- tmp.sub[grepl(j, names(tmp.sub))] 

    tmp$Year <- tmp.sub$Year 

    tmp$ID <- tmp.sub$ID 

    tmp.out <- rbind(tmp.out, setNames(tmp, names(tmp.out))) 

  } 

  tmp.out$m.id <- rep(1:12, each= 109) 

  temp2.df <- rbind(temp2.df, setNames(tmp.out, names(temp2.df))) 

} 

# remove climatic variables (will be added from temp2.df) 

temp <- full.data[,-(27:98)]  

# duplicating all rows * 12 (to get monthly format) 

full.data.long <- temp[rep(rownames(temp), each = 12),] 

# add month column 

full.data.long$m.id <- rep(1:12) 

## Join together 

full.data.long <- left_join(full.data.long, temp2.df , by=c("Year", "m.id", "ID")) 

 

##### Climatic Water Balance ##### 

# import latitude data 

lat.data <- read.csv2("Dendro_all_WGScoord.csv") 

lat.data$Y_coord_wgs <- as.numeric(as.character(lat.data$Y_coord_wgs)) 

# join together 

full.data.long <- left_join(full.data.long, lat.data[,c("Y_coord_wgs", "ID")], by = "ID") 

#### Evapotranspiration 

temp2 <- full.data.long 

tmp <- data.frame() 

for(i in unique(temp2$ID)){ 

  subs <- subset(temp2, ID == i) 

  # calculate ET0 using hargreaves function 

  harg.tmp <- as.vector(hargreaves(Tmin = subs$Tmin, Pre=subs$Prec, Tmax = subs$Tmax, lat = subs$Y_coord_wgs[1])) 

  subs$Harg <- harg.tmp 

  subs$CWB <- subs$Prec - subs$Harg 

  subs$Harg <- NULL 

  out.tmp <- subs 

  tmp <- rbind(tmp, out.tmp) 

} 

#prev years (CWB) 

out.table <- data.frame() 

for (i in unique(tmp$ID)) { 

  subs <- subset(tmp, ID == i) 

  vect <- subs["CWB"] 

  vect <- c(rep(NA, times=12), vect[1:(nrow(vect)-12),]) 

  vect <- setNames(as.data.frame(vect), paste0("prev_", "CWB")) 

  subs <- cbind(subs, vect) 

  out.table <- rbind(out.table, subs)   

} 

full.data.long <- out.table 

full.data.long$Y_coord_wgs <- NULL 

#### translate back to wide format 

#subset to CWB 

subs <- full.data.long[c("ID", "Year", "m.id", "CWB", "prev_CWB")]  

split.tmp <- split(subs, unique(subs$m.id)) 

## CWB 

tmp <-  data.frame(matrix(ncol=0, nrow=27141)) 

tmp <- cbind(tmp,split.tmp$`1`$ID) 

tmp <- cbind(tmp,  split.tmp$`1`$Year) 

for (i in 1:12){ 
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  tmp <- cbind(tmp, split.tmp[[i]]$CWB)} 

colnames(tmp) <- c("ID","Year", paste(c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Okt", "Nov", "Dez"),"CWB", sep="_")) 

# join together 

full.data.wide <- left_join(full.data, tmp, by=c("ID", "Year")) 

## prev_CWB 

tmp = data.frame(matrix(ncol=0, nrow=27141)) 

for (i in 1:12){ 

  tmp <- cbind(tmp,split.tmp[[i]]$prev_CWB) 

} 

tmp <- cbind(split.tmp[[1]]$ID, split.tmp[[1]]$Year, tmp) 

colnames(tmp) <- c("ID","Year", paste("prev",paste(c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Okt", "Nov", "Dez"),"CWB", 

sep="_"), sep="_")) 

# join 

full.data.wide <- left_join(full.data.wide, tmp, by=c("ID", "Year")) 

 

##### select output format ##### 

full.data <- full.data.long 

full.data <- full.data.wide 

 

##### Select only reliably dated years ##### 

# loop for all ID's, making temp dataframe with only reliably dated data,  

temp.df <- data.frame() 

for(i in unique(full.data$ID)){ 

  subs <- subset(full.data, ID == i) 

  subs <- subset(subs, Year >= subs$dated[1]) 

  temp.df <- rbind(temp.df, subs) 

} 

full.data <- temp.df 

 

#### Seasonal Climate (Tmax & CWB) #### 

full.data$prev_summtmax <- (full.data$prev_Jun_tmax + full.data$prev_Jul_tmax + full.data$prev_Aug_tmax)/3 

full.data$wintertmax <- (full.data$prev_Dez_tmax + full.data$Jan_tmax + full.data$Feb_tmax)/3 

full.data$springtmax <- (full.data$prev_Mar_tmax + full.data$Apr_tmax + full.data$May_tmax)/3 

full.data$summtmax <- (full.data$Jun_tmax + full.data$Jul_tmax + full.data$Aug_tmax)/3 

full.data$vegpertmax <- (full.data$Apr_tmax + full.data$May_tmax + full.data$Jun_tmax + full.data$Jul_tmax + full.data$Aug_tmax +  

  full.data$Sept_tmax)/6 

full.data$prev_summCWB <- (full.data$prev_Jun_CWB + full.data$prev_Jul_CWB + full.data$prev_Aug_CWB) 

full.data$winterCWB <- (full.data$prev_Dez_CWB + full.data$Jan_CWB + full.data$Feb_CWB) 

full.data$springCWB <- (full.data$prev_Mar_CWB + full.data$Apr_CWB + full.data$May_CWB) 

full.data$summCWB <- (full.data$Jun_CWB + full.data$Jul_CWB + full.data$Aug_CWB) 

full.data$vegperCWB <- (full.data$Apr_CWB + full.data$May_CWB + full.data$Jun_CWB + full.data$Jul_CWB + full.data$Aug_CWB +   

 full.data$Sept_CWB) 

 

##### WRITE TO FILE ##### 

write.csv2(full.data, "Master_Data_Long.csv") 

write.csv2(full.data, "Master_Data_Wide.csv") 
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#### DATA ANALYSIS #### 

###### Import data #### 

data.l <- read.csv2("Master_Data_Long.csv", sep=";", dec=",") 

data.w <- read.csv2("Master_Data_Wide.csv", sep=";", dec=",") 

data.l[1] <- NULL 

data.w[1] <- NULL 

# divide BAI values by 100 to get cm2 

data.l$BAI <- data.l$BAI/100 

data.w$BAI <- data.w$BAI/100 

 

#### Fig. 3: Walter Lieth Climate Diagram #### 

subs <- subset(data.l, Year >=1981) 

subs.low <- subset(subs, hoehemeer <= 600) 

subs.high <- subset(subs, hoehemeer >= 1200) 

### <600m 

data.WL <- matrix(nrow=4, ncol=12) 

for (i in 1:12){ 

  tmp <- subset(subs.low, m.id == i) 

  data.WL[,i] <- c(mean(tmp$Prec), mean(tmp$Tmax), mean(tmp$Tmin) , min(tmp$Tmin)) 

} 

plotWalterLieth(data.WL, station="", alt= "< 600", per= "1981:2010", margin=c(4, 4, 5, 4), 

                         pcol="#005ac8", tcol="#e81800", pfcol="#79e6e8", sfcol = 

                           "#09a0d1", shem=FALSE) 

### >1200m 

for (i in 1:12){ 

  tmp <- subset(subs.high, m.id == i) 

  data.WL[,i] <- c(mean(tmp$Prec), mean(tmp$Tmax), mean(tmp$Tmin) , min(tmp$Tmin)) 

} 

plot2 <- plotWalterLieth(data.WL, station="", alt= "> 1200", per= "1981:2010", margin=c(4, 4, 5, 4), 

                         pcol="#005ac8", tcol="#e81800", pfcol="#79e6e8", sfcol = 

                           "#09a0d1", shem=FALSE) 

 

#### Fig. 6: Climate trends  #### 

# yearly values 

data.w$yprec <- data.w$Jan_prec + data.w$Feb_prec + data.w$Mar_prec + data.w$Apr_prec + data.w$May_prec + data.w$Jun_prec + 

data.w$Jul_prec + data.w$Aug_prec + data.w$Sept_prec +data.w$Okt_prec + data.w$Nov_prec + data.w$Dez_prec 

data.w$MyTmax <- (data.w$Jan_tmax + data.w$Feb_tmax + data.w$Mar_tmax + data.w$Apr_tmax + data.w$May_tmax + data.w$Jun_tmax + 

data.w$Jul_tmax + data.w$Aug_tmax + data.w$Sept_tmax +data.w$Okt_tmax + data.w$Nov_tmax + data.w$Dez_tmax) /12 

data.w$MyCWB <- data.w$Jan_CWB + data.w$Feb_CWB + data.w$Mar_CWB + data.w$Apr_CWB + data.w$May_CWB + data.w$Jun_CWB 

+data.w$Jul_CWB + data.w$Aug_CWB + data.w$Sept_CWB +data.w$Okt_CWB + data.w$Nov_CWB + data.w$Dez_CWB 

 

# B: Yearly-Prec # 

test <- data.w %>%  

  group_by(Year) %>% dplyr::summarise(ID=ID[1], MyPrec=mean(yprec, na.rm=TRUE)) 

## significance 

#1901 -2009 

sign.l1 <- data.frame(zyp.trend.vector(test$MyPrec)) #not significant 

#1981-2009 

subs <- subset(test, Year >= 1981) 

sign.s1 <- data.frame(zyp.trend.vector(subs$MyPrec)) 

#plot 

plot1 <- ggplot() +  

  geom_line(data=test, aes(x=Year, y=MyPrec), size = 1) + 

  geom_segment(aes(x = 1901, y = sign.l1[11,], xend = 2009, yend = sign.l1[11,] + 109*sign.l1[2,]), color="orange", lwd=1.5) + 

  geom_segment(aes(x = 1981, y = sign.s1[11,], xend = 2009, yend = sign.s1[11,] + 29*sign.s1[2,]), color="red", lwd=1.5) + 

  ggtitle("b) Precipitation sum") + 

  theme_bw() + 

  scale_x_continuous( breaks = c(1900,1910,1920,1930,1940,1950,1960,1970,1980,1990,2000,2010))+ 

  theme(axis.title.x=element_blank()) + 

  ylab("[mm]")  

 

## A: Yearly mean Tmax ## 
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test <- data.w %>%  

  group_by(Year) %>% dplyr::summarise(ID=ID[1], mMyTmax=mean(MyTmax, na.rm=TRUE)) 

## significance 

#1901 -2009 

sign.l2 <- data.frame(zyp.trend.vector(test$mMyTmax)) #not significant 

#1981 -2009 

subs <- subset(test, Year >= 1981) 

sign.s2 <- data.frame(zyp.trend.vector(subs$mMyTmax)) 

#plot 

plot2 <- ggplot(data=test) +  

  geom_line(data=test, aes(x=Year, y=mMyTmax), size = 1) + 

  geom_segment(aes(x = 1901, y = sign.l2[11,], xend = 2009, yend = sign.l2[11,] + 109*sign.l2[2,]), color="orange", lwd=1.5) + 

  geom_segment(aes(x = 1981, y = sign.s2[11,], xend = 2009, yend = sign.s2[11,] + 29*sign.s2[2,]), color="red", lwd=1.5) + 

  ggtitle("a) Mean maximum temperature") + 

  theme_bw() + 

  scale_x_continuous(breaks = c(1900,1910,1920,1930,1940,1950,1960,1970,1980,1990,2000,2010))+ 

  theme(axis.title.x=element_blank())+ 

  ylab("[°C]")  

 

### C: CWB  

test <- data.w %>%  

  group_by(Year) %>% dplyr::summarise(ID=ID[1], MyCWB=mean(MyCWB, na.rm=TRUE)) 

#1901-2009 

sign.l3 <- data.frame(zyp.trend.vector(test$MyCWB)) #not significant 

#1981 -2009 

subs <- subset(test, Year >= 1981) 

sign.s3 <- data.frame(zyp.trend.vector(subs$MyCWB)) 

#plot 

plot3 <- ggplot(data=test) +  

  geom_line(aes(x=Year, y=MyCWB), size = 1) + 

  geom_segment(aes(x = 1901, y = sign.l3[11,], xend = 2009, yend =  sign.l3[11,] + 109* sign.l3[2,]), color="orange", lwd=1.5) + 

  geom_segment(aes(x = 1981, y = sign.s3[11,], xend = 2009, yend = sign.s3[11,] + 29*sign.s3[2,]), color="red", lwd=1.5) + 

  ggtitle("c) Climatic water balance") + 

  theme_bw() + 

  scale_x_continuous(breaks = c(1900,1910,1920,1930,1940,1950,1960,1970,1980,1990,2000,2010))+ 

  theme(axis.title.x =element_blank()) + 

  ylab("[mm]") 

### Plot all three in one graph 

cowplot::plot_grid(plot2, plot1, plot3, ncol = 1, align = "v", rel_heights = c(1,1,1.1)) 

ggsave("Clim_trends.pdf", width = 18, height=16, units=c("cm"), dpi=300, 

path="C://Users//Julian//Desktop//Polybox//AAA_MASTER//Manuscript//Bilder//Materials") 

 

 

##### GROWTH TRENDS ##### 

#### FIG 6: Time trend #### 

#group by year and summarize 

subs <- data.w %>% group_by(Year) %>% dplyr::summarize(samp.depth=n(), sdYRG=sd(YRG, na.rm=T), mYRG=mean(YRG, na.rm=T),  

                                                         sdBAI=sd(BAI, na.rm=T), mBAI=mean(BAI, na.rm=T)) 

## Tree ring width 

# significance 

# 1901-2009 

tmp.l1 <- data.frame(zyp.trend.vector(subs$mYRG))  

# 1981-2009 

tmp.s1 <- data.frame(zyp.trend.vector(subset(subs, Year >= 1981)$mYRG)) 

# plot 

plot1 <- ggplot(data=subs, aes(x=Year, y=mYRG)) + 

  geom_line() + 

  geom_ribbon(aes(ymin=mYRG-sdYRG/sqrt(samp.depth), ymax=mYRG+sdYRG/sqrt(samp.depth)), linetype=2, fill="blue", alpha=0.4) +  

  geom_area(aes(y=samp.depth/100), alpha=0.1)  + 

  scale_y_continuous(sec.axis = sec_axis(~ . * 100, name = "Sample Depth")) +  

  labs(x = "Year")+ 

  geom_segment(aes(x = 1900, y = tmp.l1[11,], xend = 2009, yend = tmp.l1[11,] + 108*tmp.l1[2,]), color="orange", lwd=1.5) + 
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  geom_segment(aes(x = 1981, y = tmp.s1[11,], xend = 2009, yend = tmp.s1[11,] + 29*tmp.s1[2,]), color="red", lwd=1.5) + 

  ylab("Mean tree-ring width [mm]") + 

  theme_bw()+ 

  scale_x_continuous(breaks=seq(from=1900, to=2010, by=10), minor_breaks = seq(from=1900, to=2010, by=5)) + 

  theme(axis.title.x = element_blank())+ 

  coord_cartesian(ylim = c(0, 2.5), xlim =c(1900,2010))  

 

 

 

##BAI 

#significance 

# 1901-2009 

tmp.l2 <- data.frame(zyp.trend.vector(subs$mBAI))  

tmp.s2 <- data.frame(zyp.trend.vector(subset(subs, Year >= 1981)$mBAI)) 

 

plot2 <- ggplot(data=subs, aes(x=Year, y=mBAI)) + 

  geom_line() + 

  geom_ribbon(aes(ymin=mBAI-sdBAI/sqrt(samp.depth), ymax=mBAI+sdBAI/sqrt(samp.depth)), linetype=2, fill="blue", alpha=0.4) +  

  geom_area(aes(y=samp.depth*0.14), alpha=0.1)  + 

  scale_y_continuous(sec.axis = sec_axis(~ . /0.14 , name = "Sample Depth")) +  

  labs(x = "Year")+ 

  geom_segment(aes(x = 1900, y = tmp.l2[11,], xend = 2009, yend = tmp.l2[11,] + 108*tmp.l2[2,]), color="orange", lwd=1.5) + 

  geom_segment(aes(x = 1981, y = tmp.s2[11,], xend = 2009, yend = tmp.s2[11,] + 29*tmp.s2[2,]), color="red", lwd=1.5) + 

  ylab(expression(paste("Mean basal area increment  ", paste("[cm"^"2", "]")))) + 

  theme_bw()+ 

  scale_x_continuous(breaks=seq(from=1900, to=2010, by=10), minor_breaks = seq(from=1900, to=2010, by=5)) + 

  coord_cartesian(ylim = c(0, 35), xlim =c(1900,2010)) 

 

#plot together 

cowplot::plot_grid(plot1, plot2, ncol=1, align="v", rel_heights = c(1,1.1)) 

#save graphic 

ggsave("BAI_YRG_Growthtrend_by_Year.pdf", width = 20, height= 16, units="cm", dpi=300, 

       path="C://Users//Julian//Desktop//Polybox//AAA_MASTER//Manuscript//Bilder//Materials") 

 

 

#### Fig 7: cambial age #### 

# grouped by year-ring age 

subs <- data.w %>% group_by(yearringage) %>% dplyr::summarize(samp.depth=n(), sdYRG=sd(YRG, na.rm=T), mYRG=mean(YRG, na.rm=T),  

                                                                 sdBAI=sd(BAI, na.rm=T), mBAI=mean(BAI, na.rm=T)) 

## 7.A: Tree ring width 

# significance 

tmp.3 <- data.frame(zyp.trend.vector(subs$mYRG))  

#plot 

plot3 <- ggplot(data=subs, aes(x=yearringage, y=mYRG)) + 

  geom_line() + 

  geom_ribbon(aes(ymin=mYRG-sdYRG/sqrt(samp.depth), ymax=mYRG+sdYRG/sqrt(samp.depth)), linetype=2, fill="blue", alpha=0.4) +  

  geom_area(aes(y=samp.depth/30), alpha=0.1) +  

  labs(y = "Mean tree-ring width [mm]")+ 

  geom_abline(intercept = tmp.3[11,], slope=tmp.3[2,], color="orange", lwd=1.5) + 

  theme_bw()+ 

  scale_x_continuous(breaks=seq(from=0, to=450, by=50)) + 

  scale_y_continuous(limits=c(0,3), sec.axis = sec_axis(~ . * 30 , name = "Sample Depth")) + 

  theme(axis.title.x = element_blank())+ 

  coord_cartesian(ylim = c(0, 3), xlim =c(0,400)) 

 

## 7.B: BAI 

#significance 

tmp.4 <- data.frame(zyp.trend.vector(subs$mBAI))  

#plot 

plot4 <- ggplot(data=subs, aes(x=yearringage,y=mBAI)) + 

  geom_line() + 

  geom_ribbon(aes(ymin=mBAI-sdBAI/sqrt(samp.depth), ymax=mBAI+sdBAI/sqrt(samp.depth)), linetype=2, fill="blue", alpha=0.4) +  
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  geom_area(aes(y=samp.depth*0.65), alpha=0.1)  + 

  scale_y_continuous(limits=c(0,60), sec.axis = sec_axis(~ . /0.65 , name = "Sample Depth")) +  

  labs(x = "Year-ring age [y]")+ 

  geom_abline(intercept = tmp.4[11,], slope=tmp.4[2,], color="orange", lwd=1.5) + 

  ylab(expression(paste("Mean basal area increment  ", paste("[cm"^"2", "]")))) + 

  theme_bw()+ 

  scale_x_continuous(breaks=seq(from=0, to=450, by=50)) + 

  coord_cartesian(ylim = c(0, 60), xlim =c(0,400)) 

# plot together 

cowplot::plot_grid(plot3, plot4, ncol=1, align="v", rel_heights = c(1,1.1)) 

ggsave("BAI_YRG_GrowthTrend_YEARRINGAGE.pdf", width = 18, height=16, units="cm", dpi=300, 

       path="C://Users//julianmu//Desktop//Polybox//AAA_MASTER//Manuscript//Bilder//Materials") 

 

 

## % trees showing significant increase in growth  

# Tree ring width 

g.trends <- data.frame() 

for (i in unique(data.w$ID)){ 

  temp <- subset(data.w, ID==i) 

  trend <- data.frame(zyp.trend.vector(temp$YRG))  

  trend <- cbind(temp$ID[1],trend[2,],trend[6,]) 

  g.trends<- rbind(g.trends, trend) 

} 

# select significant p<0.05 

sign.df <- g.trends[g.trends$V3 < 0.05,] 

nonsign.df <- g.trends[g.trends$V3 > 0.05,] 

sign.pos <- sign.df[sign.df$V2 > 0,] 

sign.neg <- sign.df[sign.df$V2 < 0,] 

# % positive 

nrow(sign.pos)/nrow(g.trends) 

# % non-significant 

nrow(nonsign.df)/nrow(g.trends) 

# % negative 

nrow(sign.neg)/nrow(g.trends) 

 

### BAI 

g.trends <- data.frame() 

for (i in unique(data.w$ID)){ 

  temp <- subset(data.w, ID==i) 

  trend <- data.frame(zyp.trend.vector(temp$BAI))  

  trend <- cbind(temp$ID[1],trend[2,],trend[6,]) 

  g.trends<- rbind(g.trends, trend) 

} 

### select significant p<0.05 

sign.df <- g.trends[g.trends$V3 < 0.05,] 

nonsign.df <- g.trends[g.trends$V3 > 0.05,] 

sign.pos <- sign.df[sign.df$V2 > 0,] 

sign.neg <- sign.df[sign.df$V2 < 0,] 

# % positive 

nrow(sign.pos)/nrow(g.trends) 

# % non-significant 

nrow(nonsign.df)/nrow(g.trends) 

# % negative 

nrow(sign.neg)/nrow(g.trends) 

 

 

#### Fig 10: Competition classes #### 

# subset to data with reasonable competition values (removes 5 trees: P63B1, P173B8, P237B9, P334B9, P276B1) 

subs <- subset(data.w, comp.value.10m<6) 

subs <- subs[subs$ID != "P64B8",]   # remove one outlier 

# only looking at timespan where competition is assumed as +/- cst 

subs <- subset(subs, Year >= 1989) 
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# summarize data by ID 

CI.test <- subs %>% 

  group_by(ID) %>% 

  dplyr::summarize(MeanG = mean(BAI, na.rm=T), masl=hoehemeer[1], CI=comp.value.10m[1], BHD = bhd[1]) 

## Exponential decay model 

exp.mod <- lm(log(MeanG) ~ CI, data=CI.test) 

summary(exp.mod) #R2 =0.398 

### Predict Mean Growth from Model 

CI.vect <- seq(from= 0,6, by=0.1) 

# predict variables for curve 

pred <- exp(predict(exp.mod,list(CI=CI.vect))) 

pred <- as.data.frame(cbind(MeanG= pred, CI = CI.vect)) 

# set threshold value log(BAI/2)-intercept/slope) 

thresh = (log(exp(3.54640)/2)-3.54640)/(-0.51195) 

 

#### add competition classes #### 

subs$comp.class <-   ifelse(subs$comp.value.10m <= thresh, "Low", "High") 

data.w$comp.class <- ifelse(data.w$comp.value.10m <= thresh, "Low", "High") 

data.l$comp.class <- ifelse(data.w$comp.value.10m <= thresh, "Low", "High") 

# reorder CC levels 

subs$comp.class <-   factor(subs$comp.class, levels=c("Low", "High")) 

data.w$comp.class <- factor(data.w$comp.class, levels=c("Low", "High")) 

data.l$comp.class <- factor(data.l$comp.class, levels=c("Low", "High")) 

##  summarize with comp classes  

CI.test <- subs %>% 

  group_by(ID) %>% 

  dplyr::summarize(MeanG = mean(BAI, na.rm=T), masl=hoehemeer[1], CI=comp.value.10m[1], CC= comp.class[1], BHD = bhd[1]) 

# plot 

ggplot(data=CI.test, aes(x=CI, y=MeanG)) + geom_point(aes(col=CC), size=2) +  

  geom_line(data=pred, aes(x=CI, y=MeanG), color= "red", lwd=1) + 

  theme_bw() + 

  scale_x_continuous(breaks=seq(from=0, to=20, by=0.5)) + 

  xlab("Competition Index [1]") + 

  ylab(expression(paste("Mean basal area increment  ", paste("[cm"^"2", "]")))) + 

  geom_vline(xintercept = thresh) + 

  ylim(c(0,80)) +  

  scale_color_manual("Competition \nClass",  

                     breaks = c("Low", "High"), 

                     labels = c("Low (n=151)", "High (n=60)"), 

                     values = c("#FC8D59", "#91CF60")) 

ggsave("DBH_vs_CI_comp_cutoff.pdf", width = 20, height=14, units="cm", dpi=300, 

       path="C://Users//julianmu//Desktop//Polybox//AAA_MASTER//Manuscript//Bilder//Materials") 

 

#### TREECLIM #### 

library(treeclim) 

library(dplR) 

library(stats) 

 

#### Seasonal correlations Fig 9 & 12:#### 

# run script below for (1901-2009) and (1989-2009) 

#subset for the chosen timeperiod  

subs <- subset(data.l, Year>= 1989) 

dcc.fin.tmax <- data.frame() 

dcc.fin.tmin <- data.frame() 

dcc.fin.prec <- data.frame() 

dcc.fin.CWB <- data.frame() 

#### LOOP over all id's 

for (i in unique(subs$ID)){ 

   

  # Make Subset for single TreeID in loop   

  temp <- subset(subs, ID == i)  

  temp.chron <- subset(temp, m.id==1) 
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  temp.BAI.chron <- data.frame(BAI = temp.chron$BAI) 

  rownames(temp.BAI.chron) <- temp.chron$Year 

  ###### make chronology 

  tmp.BAI.chron <- chron(temp.BAI.chron, prewhiten=TRUE) 

   

  #### run dcc 

  test.tmax <- dcc(chrono= tmp.BAI.chron, climate=temp[,c("Year", "m.id", "Tmax")], 

                   selection = .mean(-6:-8, "Tmax") + .mean(-9:-11, "Tmax") + .mean(-12:2, "Tmax") + .mean(3:5, "Tmax") + .mean(6:8, "Tmax"),   

                   method="correlation") 

  test.tmin <- dcc(chrono= tmp.BAI.chron, climate=temp[,c("Year", "m.id", "Tmin")], 

                   selection = .mean(-6:-8, "Tmin") + .mean(-9:-11, "Tmin") + .mean(-12:2, "Tmin") + .mean(3:5, "Tmin") + .mean(6:8, "Tmin"),   

                   method="correlation") 

  test.prec <- dcc(chrono= tmp.BAI.chron, climate=temp[,c("Year", "m.id", "Prec")], 

                   selection = .sum(-6:-8, "Prec") + .sum(-9:-11, "Prec") + .sum(-12:2, "Prec") + .sum(3:5, "Prec") + .sum(6:8, "Prec"),  

                   method="correlation") 

  test.CWB <- dcc(chrono= tmp.BAI.chron, climate=temp[,c("Year", "m.id", "CWB")], 

                     selection = .sum(-6:-8, "CWB") + .sum(-9:-11, "CWB") + .sum(-12:2, "CWB") + .sum(3:5, "CWB") + .sum(6:8, "CWB"),  

                     method="correlation") 

  #### fill output table 

  dcc.fin.tmax <- rbind(dcc.fin.tmax, test.tmax$coef$coef) 

  dcc.fin.tmin <- rbind(dcc.fin.tmin, test.tmin$coef$coef)  

  dcc.fin.prec <- rbind(dcc.fin.prec, test.prec$coef$coef) 

  dcc.fin.CWB <- rbind(dcc.fin.CWB, test.CWB$coef$coef) 

} 

### rename output tables 

dcc.fin.tmax <- setNames(dcc.fin.tmax, paste0("tmax", c("-6:-8", "-9:-11", "-12:2", "3:5", "6:8"))) 

dcc.fin.tmax$ID <- unique(subs$ID) 

dcc.fin.tmin <- setNames(dcc.fin.tmin, paste0("tmin", c("-6:-8", "-9:-11", "-12:2", "3:5", "6:8"))) 

dcc.fin.tmin$ID <- unique(subs$ID) 

dcc.fin.prec <- setNames(dcc.fin.prec, paste0("prec",c("-6:-8", "-9:-11", "-12:2", "3:5", "6:8"))) 

dcc.fin.prec$ID <- unique(subs$ID) 

dcc.fin.CWB <- setNames(dcc.fin.CWB, paste0("CWB",c("-6:-8", "-9:-11", "-12:2", "3:5", "6:8"))) 

dcc.fin.CWB$ID <- unique(subs$ID) 

 

### join aggregated values for each tree to the full.df 

temp <- subset(data.l, Year==2009) 

temp <- subset(temp, m.id==1) 

tmp <- left_join(temp, dcc.fin.tmax, by = "ID") 

tmp <- left_join(tmp, dcc.fin.tmin, by = "ID") 

tmp <- left_join(tmp, dcc.fin.prec, by = "ID") 

tmp <- left_join(tmp, dcc.fin.CWB, by = "ID") 

 

# melt for more efficient plotting 

dcc.coeff.df <- melt(tmp, id.vars= c("ID", "act.dbh", "hoehemeer", "comp.value.10m", "comp.class"), 

measure.vars=c(paste0("tmax", c("-6:-8", "-9:-11", "-12:2", "3:5", "6:8")), 

paste0("tmin", c("-6:-8", "-9:-11", "-12:2", "3:5", "6:8")), 

paste0("prec",c("-6:-8", "-9:-11", "-12:2", "3:5", "6:8")), 

paste0("CWB",c("-6:-8", "-9:-11", "-12:2", "3:5", "6:8")))) 

 

### individual data frames 

dcc.coeff.tmax <- melt(tmp, id.vars= c("ID", "act.dbh", "hoehemeer", "comp.value.10m", "comp.class"), 

measure.vars=c(paste0("tmax", c("-6:-8", "-9:-11", "-12:2", "3:5", "6:8")))) 

dcc.coeff.tmin <- melt(tmp, id.vars= c("ID", "act.dbh", "hoehemeer", "comp.value.10m", "comp.class"), 

measure.vars=c(paste0("tmin", c("-6:-8", "-9:-11", "-12:2", "3:5", "6:8")))) 

dcc.coeff.prec <- melt(tmp, id.vars= c("ID", "act.dbh", "hoehemeer", "comp.value.10m", "comp.class"), 

measure.vars=c(paste0("prec",c("-6:-8", "-9:-11", "-12:2", "3:5", "6:8")))) 

dcc.coeff.CWB <- melt(tmp, id.vars= c("ID", "act.dbh", "hoehemeer", "comp.value.10m", "comp.class"), 

measure.vars=c(paste0("CWB",c("-6:-8", "-9:-11", "-12:2", "3:5", "6:8")))) 

 

#vector for labelling x-axis 

label.vect <- c("p.Summer", "p.Fall", "Winter", "Spring", "Summer") 
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#### Fig 9: seasonal correlations (1901-2009) #### 

plot1 <- ggplot(data=dcc.coeff.tmax, aes(x=variable, y =value)) + 

  geom_boxplot(fill='#A4A4A4') + 

  scale_x_discrete(labels=label.vect) +  

  geom_abline(aes(slope=0, intercept=0)) +  

  ggtitle("a) Maximum temperature") + 

  theme_bw()+ 

  theme(axis.title.x=element_blank(), 

axis.ticks.x=element_blank(), 

axis.text.x =element_blank(), 

axis.ticks.y=element_blank(), 

axis.title.y=element_blank())+ 

  ylim(-0.4,0.4) 

 

plot2 <- ggplot(data=dcc.coeff.tmin, aes(x=variable, y =value)) + 

  geom_boxplot(fill='#A4A4A4') + 

  scale_x_discrete(labels=label.vect) + 

  geom_abline(aes(slope=0, intercept=0)) + 

  theme_bw()+ 

  ggtitle("b) Minimum temperature")+ 

  theme(axis.title.x=element_blank(), 

 axis.ticks.x=element_blank(), 

axis.text.x =element_blank(), 

axis.text.y =element_blank(), 

axis.title.y=element_blank(), 

axis.ticks.y=element_blank()) + 

  ylim(-0.4,0.4) 

 

 

plot3 <- ggplot(data=dcc.coeff.prec, aes(x=variable, y =value)) + 

  geom_boxplot(fill='#A4A4A4') + 

  scale_x_discrete(labels=label.vect) + 

  geom_abline(aes(slope=0, intercept=0)) + 

  theme_bw()+ 

  ggtitle("c) Precipitation")+ 

  theme(legend.position = "none", 

axis.title.y=element_blank())+ 

  xlab("Season")+ 

  ylim(-0.4,0.4) 

 

plot4 <- ggplot(data=dcc.coeff.CWB, aes(x=variable, y =value)) + 

  geom_boxplot(fill='#A4A4A4') + 

  scale_x_discrete(labels=label.vect) + 

  geom_abline(aes(slope=0, intercept=0)) + 

  theme_bw()+ 

  ggtitle("d) Climatic water balance")+ 

  theme(axis.text.y=element_blank(), 

axis.ticks.y=element_blank(), 

axis.title.y=element_blank())+ 

  theme(legend.position = "none")+ 

  xlab("Season")+ 

  ylim(-0.4,0.4) 

ggarrange(plot1, plot2, plot3, plot4, ncol=2, nrow=2, heights=c(1,1.1), common.legend = TRUE, legend="right") 

ggsave("Dcc_seasonal_long.jpeg", width = 18, height = 14, units="cm", dpi=300, 

path="C://Users//julianmu//Desktop//Polybox//AAA_MASTER//Manuscript//Bilder//Materials") 

 

#### Fig.12 Seasonal correlations with competiton classes (1989-2009) ##### 

label.vect <- c("p.Summer", "p.Fall", "Winter", "Spring", "Summer") 

plot1 <- ggplot(data=dcc.coeff.tmax, aes(x=variable, y =value, fill=comp.class, alpha=0.7)) + 

  geom_boxplot() + 

  scale_x_discrete(labels=label.vect) +  

  geom_abline(aes(slope=0, intercept=0)) +  
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  ggtitle("a) Maximum temperature") + 

  theme_bw()+ 

  theme(axis.title.x=element_blank(), 

axis.ticks.x=element_blank(), 

axis.text.x =element_blank(), 

axis.ticks.y=element_blank(), 

axis.title.y=element_blank(), 

legend.position="none")+ 

  ylim(-0.6,0.6)+ 

  scale_fill_manual("Competition \nClass",  

breaks = c("Low", "High"), 

values = c("#91CF60", "#FC8D59")) 

 

plot2 <- ggplot(data=dcc.coeff.tmin, aes(x=variable, y =value, fill=comp.class, alpha=0.7)) + 

  geom_boxplot() + 

  scale_x_discrete(labels=label.vect) + 

  geom_abline(aes(slope=0, intercept=0)) + 

  ggtitle("b) Minimum temperature")+ 

  theme_bw()+ 

  theme(axis.title.x=element_blank(), 

axis.ticks.x=element_blank(), 

axis.text.x =element_blank(), 

 axis.text.y =element_blank(), 

axis.title.y=element_blank(), 

axis.ticks.y=element_blank(), 

legend.position = "none") + 

  ylim(-0.6,0.6)+ 

  scale_fill_manual("Competition \nClass",  

breaks = c("Low", "High"), 

values = c("#91CF60", "#FC8D59")) 

 

plot3 <- ggplot(data=dcc.coeff.prec, aes(x=variable, y =value, fill=comp.class, alpha=0.7)) + 

  geom_boxplot() + 

  scale_x_discrete(labels=label.vect) + 

  geom_abline(aes(slope=0, intercept=0)) + 

  ggtitle("c) Precipitation")+ 

  theme_bw()+ 

  theme(axis.title.y=element_blank(),legend.position="none")+ 

  xlab("Season")+ 

  ylim(-0.6,0.6)+ 

  scale_fill_manual("Competition \nClass",  

breaks = c("Low", "High"), 

values = c("#91CF60", "#FC8D59")) 

 

plot4 <- ggplot(data=dcc.coeff.CWB, aes(x=variable, y =value, fill=comp.class, alpha=0.7)) + 

  geom_boxplot() + 

  scale_x_discrete(labels=label.vect) + 

  geom_abline(aes(slope=0, intercept=0)) + 

  ggtitle("d) Climatic water balance")+ 

  theme_bw()+ 

  theme(axis.text.y=element_blank(), 

axis.ticks.y=element_blank(), 

axis.title.y=element_blank())+ 

  theme(legend.position = "none")+ 

  xlab("Season")+ 

  ylim(-0.6,0.6)+ 

  scale_fill_manual("Competition \nClass",  

breaks = c("Low", "High"), 

values = c("#91CF60", "#FC8D59")) 
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# plot grid 

plotg <- plot_grid(plot1,plot2,plot3,plot4, ncol=2, rel_heights = c(1,1.1), rel_widths = c(1.05,1)) 

# get legend 

plot.leg <-ggplot(data=dcc.coeff.prec, aes(x=variable, y =value, fill = comp.class)) + 

  geom_boxplot()+  

  labs(fill = "Competition \nClass") + 

  scale_fill_manual("Competition \nClass",  

breaks = c("Low", "High"), 

labels=c("Low (n = 151)", "High (n = 60)"), 

values = c("#91CF60", "#FC8D59")) 

plot.leg <- get_legend(plot.leg) 

# final plot 

plot_grid(plotg, plot.leg, rel_widths = c(1,0.24)) 

#save to jpeg 

ggsave("Dcc_seasonal_comp_BAI.pdf", width = 18, height = 14, units="cm", dpi=300, 

path="C://Users//julianmu//Desktop//Polybox//AAA_MASTER//Manuscript//Bilder//Materials") 

 

#### Monthly correlations Fig. 8 & 11 #### 

# run script below for (1901-2009) and (1989-2009) 

subs <- subset(data.l, Year>= 1989) 

dcc <- data.frame(m.id = c(1:16)) 

dcc.fin <- data.frame() 

 

### LOOP over each id 

for (i in unique(subs$ID)){ 

  temp <- subset(subs, ID == i)  

  temp.chron <- subset(temp, m.id==1) 

  temp.bai.chron <- data.frame(BAI = temp.chron$BAI) 

  rownames(temp.bai.chron) <- temp.chron$Year 

  ###### make chronology 

  tmp.bai.chron <- chron(temp.bai.chron, prewhiten=TRUE) 

   

  ######### DCC (Bootstrapped correlation values BAI-CLIM) 

  dcc.prec <-  dcc(chrono = tmp.bai.chron, climate=temp[,c("Year","m.id","Prec")], selection = -6:9, method="correlation") 

  dcc.tmin <-  dcc(chrono = tmp.bai.chron, climate=temp[,c("Year","m.id","Tmin")], selection = -6:9, method="correlation") 

  dcc.tmax <-  dcc(chrono = tmp.bai.chron, climate=temp[,c("Year","m.id","Tmax")], selection = -6:9, method="correlation") 

  dcc.CWB <- dcc(chrono = tmp.bai.chron, climate=temp[,c("Year", "m.id", "CWB")], selection = -6:9, method="correlation") 

  dcc$ID <- rep(temp$ID[1], times=16) 

  dcc$comp.val <- rep(temp$comp.value.10m[1], times=16) 

  dcc$comp.class <- rep(temp$comp.class[1], times=16) 

  dcc$tmax.coef <-  dcc.tmax$coef$coef 

  dcc$tmin.coef <-  dcc.tmin$coef$coef 

  dcc$prec.coef <-  dcc.prec$coef$coef 

  dcc$CWB <- dcc.CWB$coef$coef 

  #### fill output table 

  dcc.fin <- rbind(dcc.fin, dcc) 

} 

test.df <- melt(dcc.fin, id.vars=c("ID", "m.id", "comp.class", "comp.val")) 

 

#### Fig 11: monthly correlations with competition classes (1989-2009) #### 

test.df$m.id <- as.factor(test.df$m.id) 

label.vect <- c("-J","-J","-A","-S","-O","-N","-D","J","F","M","A","M","J","J","A","S") 

 

subs <- subset(test.df, variable=="tmax.coef") 

plot1 <- ggplot(data=subs, aes(x=m.id, y =value, fill=comp.class, alpha=0.7)) + 

  geom_boxplot() + 

  scale_x_discrete(labels=label.vect) +  

  geom_abline(aes(slope=0, intercept=0)) +  

  ggtitle("a) Maximum temperature") + 

  theme_bw()+ 

  theme(axis.title.x=element_blank(), 

axis.ticks.x=element_blank(), 
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axis.text.x =element_blank(), 

 axis.ticks.y=element_blank(), 

axis.title.y=element_blank(), 

legend.position = "none") + 

  scale_fill_manual("Competition \nClass",  

breaks = c("Low", "High"), 

values = c("#91CF60", "#FC8D59")) + 

  ylim(-0.6,0.6) 

 

subs <- subset(test.df, variable=="tmin.coef") 

plot2 <- ggplot(data=subs, aes(x=m.id, y =value, fill=comp.class, alpha=0.7)) + 

  geom_boxplot() + 

  scale_x_discrete(labels=label.vect) + 

  geom_abline(aes(slope=0, intercept=0)) + 

  ggtitle("b) Minimum temperature")+ 

  theme_bw()+ 

  theme(axis.title.x=element_blank(), 

axis.ticks.x=element_blank(), 

axis.text.x =element_blank(), 

axis.text.y =element_blank(), 

axis.title.y=element_blank(), 

axis.ticks.y=element_blank(), 

 legend.position = "none") + 

  scale_fill_manual("Competition \nClass",  

breaks = c("Low", "High"), 

values = c("#91CF60", "#FC8D59")) + 

  ylim(-0.6,0.6) 

 

subs <- subset(test.df, variable=="prec.coef") 

plot3 <- ggplot(data=subs, aes(x=m.id, y =value, fill=comp.class, alpha=0.7)) + 

  geom_boxplot() + 

  theme_bw()+ 

  scale_x_discrete(labels=label.vect) + 

  geom_abline(aes(slope=0, intercept=0)) + 

  ggtitle("c) Precipitation")+ 

  theme(legend.position = "none", 

        axis.title.y=element_blank())+ 

  xlab("Month")+ 

  scale_fill_manual("Competition \nClass",  

                    breaks = c("Low", "High"), 

                    values = c("#91CF60", "#FC8D59")) + 

  ylim(-0.6,0.6) 

subs <- subset(test.df, variable=="CWB") 

plot4 <- ggplot(data=subs, aes(x=m.id, y =value, fill=comp.class, alpha=0.7)) + 

  geom_boxplot() + 

  theme_bw()+ 

  scale_x_discrete(labels=label.vect) + 

  geom_abline(aes(slope=0, intercept=0)) + 

  ggtitle("d) Climatic water balance")+ 

  theme(axis.text.y=element_blank(), 

        axis.ticks.y=element_blank(), 

        axis.title.y=element_blank())+ 

  theme(legend.position = "none") + 

  xlab("Month")+ 

  scale_fill_manual("Competition \nClass",  

                    breaks = c("Low", "High"), 

                    values = c("#91CF60", "#FC8D59")) + 

  ylim(-0.6,0.6) 
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## plot  

plotg <- plot_grid(plot1,plot2,plot3,plot4, ncol=2, rel_heights = c(1,1.1)) 

# legend 

plot.leg <- ggplot(data=subs, aes(x=m.id, y =value, fill=comp.class)) + geom_boxplot() + 

  theme(axis.text.y=element_blank(), 

axis.ticks.y=element_blank(), 

axis.title.y=element_blank())+ 

  scale_fill_manual("Competition \nClass", 

breaks = c("Low", "High"), 

 labels = c("Low (n=151)", "High (n=60)"), 

values = c("#91CF60", "#FC8D59"))  

plot.leg <- get_legend(plot.leg) 

# final plot 

plot_grid(plotg, plot.leg, rel_widths = c(1,0.28)) 

#save to jpeg 

ggsave("dcc_monthly_comp.jpeg", width = 20, height = 14, units="cm", dpi=300, 

path="C://Users//julianmu//Desktop//Polybox//AAA_MASTER//Manuscript//Bilder//Materials") 

 

###### Fig. 8: monthly correlations (1901-2009) #### 

test.df$m.id <- as.factor(test.df$m.id) 

label.vect <- c("-J","-J","-A","-S","-O","-N","-D","J","F","M","A","M","J","J","A","S") 

subs <- subset(test.df, variable=="tmax.coef") 

plot1 <- ggplot(data=subs, aes(x=m.id, y =value)) + 

  geom_boxplot(fill='#A4A4A4') + 

  scale_x_discrete(labels=label.vect) +  

  geom_abline(aes(slope=0, intercept=0)) +  

  ggtitle("a) Maximum temperature") + 

  theme_bw()+ 

  theme(axis.title.x=element_blank(), 

        axis.ticks.x=element_blank(), 

        axis.text.x =element_blank(), 

        axis.ticks.y=element_blank(), 

        axis.title.y=element_blank(), 

        legend.position = "none") + 

  ylim(-0.4,0.4) 

subs <- subset(test.df, variable=="tmin.coef") 

plot2 <- ggplot(data=subs, aes(x=m.id, y =value)) + 

  geom_boxplot(fill='#A4A4A4') + 

  scale_x_discrete(labels=label.vect) + 

  geom_abline(aes(slope=0, intercept=0)) + 

  ggtitle("b) Minimum temperature")+ 

  theme_bw()+ 

  theme(axis.title.x=element_blank(), 

        axis.ticks.x=element_blank(), 

        axis.text.x =element_blank(), 

        axis.text.y =element_blank(), 

        axis.title.y=element_blank(), 

        axis.ticks.y=element_blank(), 

        legend.position = "none") + 

  ylim(-0.4,0.4) 

subs <- subset(test.df, variable=="prec.coef") 

plot3 <- ggplot(data=subs, aes(x=m.id, y =value)) + 

  geom_boxplot(fill='#A4A4A4') + 

  theme_bw()+ 

  scale_x_discrete(labels=label.vect) + 

  geom_abline(aes(slope=0, intercept=0)) + 

  ggtitle("c) Precipitation")+ 

  theme(legend.position = "none", 

axis.title.y=element_blank())+ 

  xlab("Month")+ 

  scale_fill_brewer(palette="RdYlGn", direction= -1)+ 

  ylim(-0.4,0.4) 
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subs <- subset(test.df, variable=="CWB") 

plot4 <- ggplot(data=subs, aes(x=m.id, y =value)) + 

  geom_boxplot(fill='#A4A4A4') + 

  theme_bw()+ 

  scale_x_discrete(labels=label.vect) + 

  geom_abline(aes(slope=0, intercept=0)) + 

  ggtitle("d) Climatic water balance")+ 

  theme(axis.text.y=element_blank(), 

axis.ticks.y=element_blank(), 

axis.title.y=element_blank())+ 

  theme(legend.position = "none") + 

  xlab("Month")+ 

  scale_fill_brewer(palette="RdYlGn", direction= -1)+ 

  ylim(-0.4,0.4) 

 

## plot grid 

library(cowplot) 

plot_grid(plot1,plot2,plot3,plot4, ncol=2, rel_heights = c(1,1.1)) 

## save to jpeg 

ggsave("dcc_monthly.jpeg", width = 20, height = 14, units="cm", dpi=300, 

       path="C://Users//julianmu//Desktop//Polybox//AAA_MASTER//Manuscript//Bilder//Materials") 

 

#### Mixed effects Model #### 

#### Load data  

library(lme4) 

library(nlme) 

library(MuMIn) 

subs.mem <- data.w 

 

### subset to necessary variables 

mem.data <- dplyr::select(subs.mem, "ID","Year", "BAI", "act.dbh", "comp.class", 

"prev_summCWB", "springCWB", "summCWB", "winterCWB", 

"prev_summtmax", "summtmax", "wintertmax") 

 

### scale independent variables 

mem.data$dbh.sc <- scale(mem.data$act.dbh, center=TRUE, scale= T) 

mem.data$p.su.cwb <- scale(mem.data$prev_summCWB, center=TRUE, scale= T) 

mem.data$sp.cwb <- scale(mem.data$springCWB, center=TRUE, scale= T) 

mem.data$su.cwb <- scale(mem.data$summCWB, center=TRUE, scale= T) 

mem.data$w.tmax <- scale(mem.data$wintertmax, center=TRUE, scale=T) 

mem.data$p.su.tmax <- scale(mem.data$prev_summtmax, center=TRUE, scale= T) 

mem.data$su.tmax <- scale(mem.data$summtmax, center=TRUE, scale= T) 

mem.data$ID <- as.factor(as.character(mem.data$ID)) 

 

#### subset to observed categories 

subs.long <- subset(mem.data) 

subs.short <-  subset(mem.data, Year >= 1989) 

subs.low <- subset(subs.short, comp.class=="Low") 

subs.high <- subset(subs.short, comp.class=="High") 

 

#formula  

form_s <- log(BAI) ~ dbh.sc*su.cwb + p.su.tmax + p.su.cwb + sp.cwb + w.tmax  + su.tmax 
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#### FIND OPTIMAL RANDOM STRUCTURE (REML-comparison possible since same fixed structure) 

# no random term 

lm.1 <- gls(form_s,  

data = subs.long, 

method = "REML", 

 na.action = na.exclude) 

# random intercept 

lm.2 <- lme(form_s, 

data = subs.long, 

random = ~ 1 | ID, 

method = "REML", 

na.action = na.exclude) 

anova(lm.1, lm.2) # lm.2 is clearly superior (p<0.001) 

 

#### FINAL MODELS #### 

############### for long full subset 

lm.long <- lme(form_s, 

data = subs.long, 

random = ~ 1 |ID, 

 method = "REML", 

na.action = na.omit) 

summary(lm.long) 

r.squaredGLMM(lm.long) 

plot(lm.long) 

 

############### for short full subset 

lm.short <- lme(form_s, 

data = subs.short, 

random = ~1 | ID, 

method = "REML", 

na.action = na.exclude, 

control= lmeControl(opt='optim')) 

summary(lm.short) 

r.squaredGLMM(lm.short) 

plot(lm.short) 

 

############### for low competition subset 

lm.low <- lme(form_s, 

data = subs.low, 

random = ~ 1  | ID, 

method = "REML", 

 na.action = na.exclude) 

summary(lm.low) 

r.squaredGLMM(lm.low) 

plot(lm.low) 

 

############### for high competition subset 

lm.high <- lme(form_s, 

data = subs.high, 

random = ~ 1 | ID, 

method = "REML", 

na.action = na.exclude) 

summary(lm.high) 

r.squaredGLMM(lm.high) 

plot(lm.high) 

 

 


