Ein Kompass, der nach Westen zeigt
Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben im Nanobereich ein besonderes Phänomen des Magnetismus entdeckt. Es ermöglicht, Magnete in ungewöhnlichen Konfigurationen zusammenzustellen. Damit könnte man Computerspeicher und -schalter bauen, um die Leistungsfähigkeit von Mikroprozessoren zu steigern.
Magnete zeichnen sich dadurch aus, dass sie einen Nordpol und einen Südpol haben. Werden zwei Magnete nahe beieinandergehalten, ziehen sich deren entgegengesetzte Pole an und die gleichen stossen sich ab. Deshalb richten sich magnetische Nadeln, wie sie in einem Kompass vorkommen, im Erdmagnetfeld so aus, dass damit die Kardinalrichtungen Nord und Süd und daraus abgeleitet Ost und West bestimmt werden können.
In der Welt, die wir jeden Tag mit unseren Sinnen erleben, ist diese Regel richtig. Wenn man jedoch die makroskopische Welt verlässt und in viel kleinere Dimensionen eintaucht, ändert sich das. Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben nun eine ganz besondere magnetische Wechselwirkung auf der Ebene nanoskopischer Strukturen aus wenigen Atomschichten entdeckt.
Die Atome wirken dort wie winzige Kompassnadeln und entfalten ihre Wirkung über äusserst kurze Entfernungen im Nanometerbereich, also einige millionstel Millimeter. Deshalb sprechen die Forscher auch von Nanomagneten.
Das Phänomen, das die Forschenden beobachten konnten, basiert auf einer Wechselwirkung, die die beiden Physiker Igor Dzyaloshinskii und Toru Mariya vor mehr als 60 Jahren vorhergesagt haben. «Das war unser Ausgangspunkt», sagt Zhaochu Luo, Physiker am PSI und an der ETH Zürich.
Nord-West- und Süd-Ost-Kopplung von Atomen
Bei dieser Wechselwirkung richten sich die Atomkompassnadeln nicht nur in Nord-Süd-Richtung, sondern auch in Ost-West-Richtung aus. «Wohin sie zeigen, hängt davon ab, wie sich die Atome in ihrer Nachbarschaft orientieren», sagt Luo, Erstautor der Studie, die soeben im Fachmagazin «Science» veröffentlicht wurde. Wenn beispielsweise eine Gruppe von Atomen nach Norden zeigt, weist die benachbarte Gruppe immer nach Westen. Wenn eine Gruppe von Atomen nach Süden zeigt, dann orientieren sich die benachbarten Atome nach Osten.
Diese Orientierungen können durch Magnetfelder oder elektrische Ströme umgekehrt werden, das heisst von Nord nach Süd und umgekehrt. Die benachbarten Atomgruppen orientieren sich dann entsprechend neu, entweder von West nach Ost oder umgekehrt.
Aussergewöhnlich dabei ist, dass sich diese Wechselwirkung lateral, also seitlich in einer Ebene abspielt. Bislang konnten vergleichbare Kopplungen zwischen Nanomagneten nur vertikal, also bei übereinander angeordneten Atomgruppen festgestellt werden.
Das gemeinsam von PSI- und ETH-Forschenden beobachtete Phänomen ermöglicht die Entwicklung magnetischer Netzwerke in einer Ebene. Damit lassen sich unter anderem sogenannte synthetische Antiferromagnete herstellen. In diesen Antiferromagneten zeigen Atomgruppen in regelmässigen Abständen entweder nach Norden oder nach Süden. Die Anzahl der gegenläufig orientierten Nanomagnete ist etwa gleich, sodass sie sich in der Summe gegenseitig neutralisieren. Deshalb wirken Antiferromagnete auf den ersten Blick nicht wie Magnete – zum Beispiel haften sie nicht an einer Kühlschranktür.
Die benachbarten Atome, die entweder nach Westen oder nach Osten ausgerichtet sind, wirken als Abstandshalter zwischen den Magneten, die nach Norden oder Süden zeigen und jeweils nur wenige Nanometer gross sind. Dadurch ist es beispielsweise möglich, neue, effizientere Computerspeicher und -schalter zu bauen, was wiederum die Leistungsfähigkeit der Mikroprozessoren erhöht.
Logische Gatter für Computer
Die einzelnen Nanomagnete, die entweder nach Norden oder nach Süden gerichtet sind, eignen sich zum Bau von sogenannten Logikgattern. Ein solches Gatter ist ein Baustein in einem Computer und funktioniert als eine Art Schalter. Signale gehen in diese Gatter hinein und werden dann zu einem Ausgangssignal verarbeitet. In einem Computer sind viele dieser Gatter vernetzt, um Operationen durchzuführen. Ein solcher Computerbaustein kann auch mithilfe von Nanomagneten konstruiert werden, die nach Norden oder Süden zeigen. Diese sind vergleichbar mit den heute üblichen Prozessoren mit Transistoren, die Signale in binärer Form verarbeiten, also alle Signale als Null oder Eins interpretieren. Nanomagnete, die entweder nach Norden oder nach Süden ausgerichtet sind, können dies ebenfalls leisten. Das könnte Mikroprozessoren kompakter und effizienter machen.
Laut Pietro Gambardella, Professor für Magnetismus und Grenzflächenphysik der ETH Zürich, der diese Studie zusammen mit Laura Heyderman geleitet hat, «bietet die Arbeit eine Plattform, um Anordnungen von vernetzten Nanomagneten zu entwerfen und eine vollelektrische Steuerung von planaren logischen Gattern und Speichervorrichtungen zu erzielen».
Ihre Ergebnisse erzielten die Forschenden im Labor und an der Synchrotron Lichtquelle Schweiz SLS des PSI.
Dieser Artikel erschien zuerst als externe Seite Pressemitteilung des Paul Scherrer Instituts.
Literaturhinweis
Luo Z, Phuong Dao T, Hrabec A, Vijayakumar J, Kleibert A, Baumgartner M, Kirk E, Cui J, Savchenko T, Krishnaswamy G, Heyderman LJ, Gambardella P. Chirally coupled nanomagnets. Science (2019), published online March 28th, doi: externe Seite 10.1126/science.aau7913externe Seite