Ein globales Tool gegen Abholzung
Auf dem Weg zu einer positiven CO2-Bilanz sind Firmen bestrebt, Rohstoffe nachhaltig zu beschaffen. Aber wie können Nahrungsmittelproduzenten sicherstellen, dass Abholzung in den Anbaugebieten vermieden wird? ETH-Forscher entwickeln nun ein globales Tool, das alle Firmen nutzen können.
Dr. Jan Dirk Wegner und Nico Lang vom EcoVision Lab geben im Interview Einblick in ihr Forschungsprojekt mit dem Industriepartner Barry Callebaut.
Was gibt es für Strategien, um Lieferketten (z.B. für Kakao) nachhaltig zu gestalten und Abholzung zu vermeiden?
Oberstes Ziel ist es, Regionen mit hoher Biomasse, Biodiversität (wie z.B. Regenwald) und eventuell traditioneller Nutzung der lokalen Bevölkerung keinesfalls für den Anbau abzuholzen. Dagegen sind in Regionen mit geringer Biomasse Plantagen möglich. Diese Methode wird unter der Leitung von Greenpeace als High Carbon Stock Approach (HCSA) vorangetrieben und von einem Konsortium von führenden Anbau- und Verarbeitungsfirmen (wie z.B. Barry Callebaut, Nestle) unterstützt.
Die Schwierigkeit besteht darin, aktuelle Daten über die Vegetation zu bekommen. Viele Firmen beschäftigen Nachhaltigkeitsteams, die vor Ort Informationen sammeln, aber diese Informationen sind sehr lückenhaft und oft auch nicht transparent. Vorhandene Messmethoden, die mit dem Flugzeug grosse Flächen befliegen und ein Laserscanning durchführen, sind sehr kostenaufwändig und daher hinsichtlich der Reichweite beschränkt.
Welchen neuen Ansatz verfolgen Sie?
Unser Ansatz besteht darin, Satellitenaufnahmen (wie etwa von Sentinel-2) zu nutzen. Der Vorteil besteht darin, dass diese Aufnahmen global mit einer hohen zeitlichen und räumlichen Auflösung zu Verfügung stehen. Sentinel-2 liefert alle 5 Tage Aufnahmen von der ganzen Welt mit einer Auflösung von bis zu 10 m. Dadurch dass man jeweils viele Aufnahmen von einem Ort hat, können Wolken, die die Sicht verdecken, auch in tropischen Gebieten herausgerechnet werden.
Aber ganz so einfach ist es nicht, von den Satellitenaufnahmen auf die Vegetationseigenschaften zu schliessen, oder?
Durch eine Bildauswertung allein kommt man nicht zum Ziel. Aber durch die Kombination von Satellitendaten und die Anwendungen von innovativen datenbasierten Algorithmen (Stichwort: Machine Learning) können wir erstaunliche Resultate erzielen.
In einem ersten Schritt geht es um eine Schätzung der Vegetationshöhen. Das heisst wir versuchen, aus 2D-Bildern die 3D-Informationen zu extrahieren und das mit nur einem Blickwinkel. Diese Art von Problemstellung kennen wir z.B. vom autonomen Fahren (monocular depth estimation) und übertragen die Methoden auf die optischen Satellitenaufnahmen.
In einem zweiten Schritt arbeiten wir mit der NASA zusammen, um mittels Laserscanner-Daten, die von der ISS gesammelt werden, auf die Biomasse zu schliessen. Vorteil vom Laser ist, dass man Reflektionsdaten in 3D vom Blätterdach bis zum Boden erhält und so Aussagen über die Biomasse ableiten kann. Nachteil ist, dass die Lasermesspunkte nicht so dicht sind. Wir nutzen die Laserdaten als Referenzdaten und kombinieren sie mit den optischen Satellitenbildern, um eine hoch aufgelöste Karte zu erstellen. Dabei verfolgen wir einen Deep Learning Ansatz, d.h. unser Algorithmus wird mit Trainingsdaten gefüttert und lernt die Zusammenhänge.
Welche Ergebnisse konnten Sie erzielen?
Wir haben bereits Karten für ganze Länder erstellt (Gabun, Schweiz) und das mit einer räumlichen Auflösung von 10 m und einer Genauigkeit der geschätzten Vegetationshöhe von ± 5 m. Letztendlich möchten wir eine Biomasse-Karte für die ganze Welt generieren und den Firmen zur Verfügung stellen.
Wann und wie wird die globale Karte zur Verfügung stehen?
Wir planen, das Projekt in den kommenden zwei Jahren fertig zu stellen und dann in Kooperation mit dem HCSA-Konsortium ein Online-Tool zu veröffentlichen, zu dem alle Firmen kostengünstig Zugang erhalten. Das Ziel ist es, die Informationslage, die momentan sehr lückenhaft und subjektiv ist, objektiv und transparent zu machen. Alle Firmen können dann mit den gleichen gesicherten Daten arbeiten.
Diese Ergebnisse sind bestimmt auch für andere Branchen interessant.
Ja, auf jeden Fall. Viele Länder interessieren sich für unsere Karte, um sie z.B. für die Raumplanung zu nutzen und nachhaltige Entwicklungsstrategien zu verfolgen. Darüber hinaus sind unsere Daten natürlich auch für die Klimaforschung äusserst interessant.
Kontakt/ Links:
Weitere Infos gibt es auf der Projekt Website.
externe Seite High Carbon Stock Approach (HCSA)
Publikation:
Lang, N., Schindler, K., & Wegner, J. D. (2019). externe Seite Country-wide high-resolution vegetation height mapping with Sentinel-2. Remote Sensing of Environment, 233, 111347.
Sind Sie interessiert an weiteren spannenden "News for
Industry" Storys?
externe Seite Abonnieren Sie unseren Newsletter
externe Seite Folgen Sie uns auf LinkedIn
Suchen Sie Forschungspartner an der ETH Zürich?
Kontaktieren Sie ETH Industry Relation