Dünnstmögliche Membran hergestellt

Eine neue Nano-Membran aus dem «Wundermaterial» Graphen ist extrem leicht und atmungsaktiv. Nicht nur eine neue Generation von funktioneller Regenbekleidung, sondern auch ultraschnelles Filtrieren könnte damit möglich werden. Die Membran der ETH-Forschenden ist so dünn, wie es technisch nur geht.

Vergrösserte Ansicht: Darstellung einer Graphenmembran
Künstlerische Darstellung der zweischichtigen Graphenmembran (graue Wabenstruktur) mit Molekülen (blau), welche – je nach Grösse – durch Poren passieren können. (Illustration: Ben Newton / ETH Zürich)

Forschende haben eine stabile poröse Membran hergestellt, die dünner ist als ein Nanometer. Das ist hunderttausendmal weniger als der Durchmesser eines menschlichen Haares. Die Membran besteht aus zwei Schichten des oft als Wundermaterial gepriesenen Graphen, einem zweidimensionalen Film aus Kohlenstoffatomen, in das die Wissenschaftler unter der Leitung von Hyung Gyu Park, Professor am Departement für Maschinenbau und Verfahrenstechnik der ETH Zürich, winzige Poren von genau definierter Grösse ätzten.

So ist die Membran durchlässig für kleinste Moleküle. Grössere Moleküle und Partikel hingegen können sie entweder nur langsam oder gar nicht passieren. «Mit der Dicke von nur zwei Kohlenstoffatomen ist dies die dünnste technisch machbare poröse Membran überhaupt», sagt ETH-Doktorand Jakob Buchheim, einer der Erstautoren der Studie, welche die ETH-Forscher zusammen mit Wissenschaftlern der Empa und einem Forschungslabor von LG Electronics durchführten und in der Fachzeitschrift «Science» veröffentlichten.

Dereinst könnte die ultradünne Graphenmembran eine ganze Reihe von Anwendungen finden, etwa in funktioneller Regenbekleidung. «Unsere Membran ist nicht nur sehr leicht und flexibel, sondern vor allem tausendmal atmungsaktiver als Goretex», sagt Kemal Celebi, Postdoc in Parks Gruppe und ebenfalls Erstautor der Studie. Denkbar wäre auch eine Anwendung um Gasgemische in ihre Bestandteile aufzutrennen oder um Verunreinigungen aus Flüssigkeiten zu filtrieren. Denn in der Studie haben die Wissenschaftler erstmals zeigen können, dass sich Graphenmembranen überhaupt eignen, um Wasser zu filtrieren. Schliesslich können sich die Wissenschaftler den Einsatz der Membran in Geräten zur präzisen Messung und Charakterisierung Strömungsphänomenen von Gasen und Flüssigkeiten auf der Nanoebene vorstellen.

Durchbruch in der Nanofabrikation

Vergrösserte Ansicht: Ausschnitt aus einer Graphenmembran
Ausschnitt aus einer Graphenmembran mit einer Vielzahl von Poren von genau definierter Grösse (in diesem Fall mit einem Durchmesser von 50 Nanometern). (Bild: Celebi K. et al. Science 2014)

Den Forschenden gelang es nicht nur, ihr Ausgangmaterial, eine zweischichtige Graphen-Folie, mit einer aussergewöhnlich hohen Reinheit herzustellen, sondern sie konnten auch die Poren mit hoher Genauigkeit in den Graphen-Film ätzen. Dazu verwendeten sie die sogenannte Ionenfeinstrahltechnik (FIB), die auch bei der Herstellung von Halbleitern zum Einsatz kommt. Dabei wird ein Strahl von Helium- oder Galliumionen hochpräzise gesteuert, um Material wegzuätzen. So konnten die Wissenschaftler Poren in unerreichter Präzision und der gewünschten Anzahl und Grösse in das Graphen ätzen. Dieser Arbeitsschritt dauerte nur wenige Stunden, früher brauchte es dazu mehrere Tage. «Die Herstellung der Membran war nur dank dieses Durchbruchs in der Nanofabrikation möglich», sagt Ivan Shorubalko, Wissenschaftler an der Empa, der an der Arbeit beteiligt war.

Um die Präzision zu erreichen, mussten die Wissenschaftler mit zweischichtigem Graphen arbeiten. «Eine solche Membran mit nur einer Graphenschicht herzustellen, wäre mit unserer Methode nicht möglich gewesen. Denn in der Praxis ist Graphen nicht perfekt», sagt Park. Das Material kann laut dem Wissenschaftler gewisse Unregelmässigkeiten in der Wabenstruktur der Kohlenstoffatome aufweisen. Hin und wieder fehlen einzelne Atome in der Struktur. Dies beeinträchtigt nicht nur die Stabilität des Materials, auch wäre es unmöglich, an einer Fehlstelle eine hochpräzise Pore zu ätzen. Die Forschenden lösten dieses Problem, indem sie zwei Graphenschichten übereinanderlegten. Die Wahrscheinlichkeit, dass auf diese Weise zwei Fehlstellen genau übereinander zu liegen kommen, sei sehr gering, sagt Park.

Schnellstmögliche Filtration

Ein zentraler Vorteil der winzigen Dimension: Je dünner eine Membran ist, desto geringer ist ihr Widerstand, und desto höher ist die Energieeffizienz. «Mit solchen Membranen so dünn wie einzelne Atome können wir die Durchflussrate für eine gegebene Porengrösse maximieren. Ausserdem glauben wir, dass unsere Membran die denkbar schnellste Filtration ermöglicht», sagt Celebi.

Bis solche Anwendungen im industriellen Massstab oder die Herstellung von funktioneller Regenbekleidung möglich sind, muss der Herstellungsprozess allerdings weiterentwickelt werden. Für die Erforschung der Grundlagen haben die Forscher mit kleinsten Membranstücken von weniger als einem Hundertstel Quadratmillimeter gearbeitet. Es wird daher künftig darum gehen, grössere Membranflächen herzustellen und damit verschiedene Filtrationstechniken zu erforschen.

Literaturhinweis

Celebi K, Buchheim J, Wyss RM, Droudian A, Gasser P, Shorubalko I, Kye JI, Lee C, Park HG: Ultimate Permeation across Atomically Thin Porous Graphene. Science, 2014, 344: 289-344, doi: externe Seite 10.1126/science.1249097

Ähnliche Themen

Forschung

JavaScript wurde auf Ihrem Browser deaktiviert