Wie der Mars zu zwei Gesichtern kam

Ein mondgrosser Himmelskörper, der in den Südpol einschlug: ETH-Forscher zeigen mit einer Simulation auf, weshalb der Mars aus zwei dermassen unterschiedlichen Halbkugeln besteht.

Vergrösserte Ansicht: Marsdichotomie (Credits: MOLA Science Team)
Zweigeteilter Mars: Die Tiefländer der Nordhemisphäre (blau) kontrastieren mit den vulkanreichen Hochländern der Südhemisphäre. (Bild: MOLA Science Team)

Kein anderer Planet unseres Sonnensystems weist zwei so verschiedene Hälften auf wie der Mars. Vulkanarme flache Tiefländer prägen die Nordhemisphäre, ausgedehnte, von unzähligen Vulkanen durchsetzte Hochländer die Südhemisphäre. Über die Entstehung dieser sogenannten und viel diskutierten Mars-Dichotomie bestehen zwar Theorien und Vermutungen, aber kaum definitive Antworten. Nun liefern Geophysiker der ETH Zürich mit Giovanni Leone einen neuen Erklärungsansatz. Leone ist der Erstautor eines Papers, das eben in der Fachzeitschrift «Geophysical Research Letters» erschienen ist.

Mithilfe eines Computermodelles sind die Wissenschaftler zur Einsicht gelangt, dass in der Frühgeschichte des Sonnensystems ein grosser Himmelskörper in den Südpol des Mars eingeschlagen haben muss. Ihre Simulation zeigt, dass dieser Einschlag dermassen viel Energie erzeugte, dass ein Magma-Ozean entstand, der die Ausdehnung der heutigen Südhemisphäre hatte. Der Einschlagkörper musste mindestens ein Zehntel der Marsmasse betragen haben. Das flüssige Gestein erstarrte schliesslich zum bergigen Hochland, aus dem die heutige Südhalbkugel des Mars‘ besteht.

Vulkanismus stoppte vor 3,5 Milliarden Jahren

In ihrer Simulation gingen die Wissenschaftler davon aus, dass der Himmelskörper mehrheitlich aus Eisen bestand, einen Radius von mindestens 1600 Kilometern hatte und mit fünf Kilometern pro Sekunde in den Mars prallte. Zeitpunkt des Geschehens: Rund 4 bis 15 Millionen Jahre nach Entstehung des roten Planeten. Die Marskruste muss damals nur sehr dünn gewesen sein, wie die harte caramelisierte Oberfläche einer Crema Catalan. Darunter verbarg sich wie beim beliebten Dessert ein flüssiges Inneres.

Der Einschlagkörper fügte dem Mars nicht nur mehr Masse, vor allem Eisen, hinzu. Er setzte auch starke vulkanische Aktivitäten in Gang. Vor allem rund um den Äquator entstanden als Folge des Einschlags zahlreiche sogenannte Mantel-Plumes, die zum Südpol hin wanderten und sich dort vereinigten. Mantel-Plumes sind Magmasäulen, die flüssiges Material vom Mantel zur Oberfläche transportieren.

Im Modell der Forscher kommt der Mars vor 3,5 Milliarden Jahren zur Ruhe. Danach gab es auf dem roten Planeten weder Vulkanismus noch ein Magnetfeld – was mit Beobachtungen und Messungen übereinstimmt.

Realitätsnahe Modelle

Vergrösserte Ansicht: 3-D-Modell des Giant Impact am Südpol des Mars. (Graphik: ETH Zürich / Giovanni Leone)
3-D-Modell des Einschlags eines eisenreichen Himmelskörpers auf den Mars-Südpol. (Videostill: ETH Zürich / G. Leone et al 2014)

Frühere Theorien besagten das Gegenteil: dass es einen gigantischen Einschlag oder mehrere kleinere Treffer in der Nordhalbkugel gegeben haben musste. Die wichtigste Theorie über die Entstehung der Mars-Dichotomie formulierten zwei amerikanische Forscher 1984 in einem Artikel der Fachzeitschrift Nature. Sie gingen davon aus, dass ein grosser Himmelskörper am Nordpol auf den Mars prallte. 2008 griff ein anderes Team diese Ideen wieder auf und veröffentlichte diese erneut in Nature.

Diese Theorie überzeugte Leone nicht: «Unsere Szenarien stimmen besser mit einer Vielzahl von Beobachtungen des Mars überein als die Theorie eines Einschlages in der Nordhemisphäre», betont er. Auf dem Mars sind die Vulkane sehr ungleich verteilt. Auf der Südhemisphäre sind sie häufig und weit verbreitet, auf der Nordhalbkugel jedoch selten und auf wenige, kleinere Gebiete beschränkt. «Unser Modell bildet die tatsächliche Verteilung des Vulkanismus beinahe deckungsgleich ab», betont Leone. Kein anderes Modell habe diese Verteilung bisher abbilden oder erklären können.

Ihre Simulation sei auch in der Lage, die unterschiedliche Topografie der beiden Hemisphären realitätsnah wiederzugeben, sagt Leone. So bilde das Modell – je nach gewählter Zusammensetzung des Einschlagkörpers – Ausdehnung und Form der Hemisphären nahezu perfekt ab. Voraussetzung dafür ist, dass der aufprallende Körper 80 Prozent Eisen enthält. Simulieren die Forscher den Aufprall mit einem Körper aus purem Silikatgestein, so entspricht das Bild der Dichotomie nicht der Realität.

Magnetfeld als Zünglein an der Waage

Und schliesslich bestätigt das Modell der ETH-Forscher den Zeitpunkt, an dem das Magnetfeld des Mars‘ ausgelöscht wurde. Der vom Modell berechnete Zeitpunkt entspricht den rund 4,1 Milliarden Jahren vor unserer Zeit, was andere Wissenschaftler bereits zuvor nachgewiesen hatten. Das Modell zeigt überdies auch den Grund für das Abschalten auf: der steile Abfall des Wärmeflusses aus dem Kern in den Mantel und die Kruste in den ersten 400 Millionen Jahren nach dem Einschlag. Nach einer Milliarde Jahren betrug der Wärmefluss noch ein Zehntel des Anfangswertes – zu wenig, um selbst den Vulkanismus aufrechtzuerhalten. Die Modellrechnungen stimmen gut mit bisherigen Berechnungen und mineralogischen Untersuchungen überein.

Der Vulkanismus auf dem Mars hing laut Leone mit dem Wärmefluss zusammen. Der Grad des Vulkanismus könne jedoch in der Simulation variiert werden und werde von der Stärke des Einschlags beeinflusst. Dieser wiederum hänge mit der Grösse und der Zusammensetzung des Himmelskörper zusammen. Je grösser dieser ist, desto stärker ist die vulkanische Aktivität. Nach einer Milliarde Jahre aber erlöschen die Vulkanschlote, unabhängig von der Grösse des Einschlages.

Für Giovanni Leone wird immer klarer, dass der Mars schon immer ein extrem lebensfeindlicher Planet gewesen ist. Dass auf ihm jemals Ozeane oder Wasserläufe vorkamen, hält er für fast unmöglich. «Bevor dieser Planet zum heutigen kalten und trockenen Ort wurde, war er von grosser Hitze und von Vulkanismus geprägt, was allfälliges Wasser hätte verdunsten lassen und die Entstehung von Leben sehr unwahrscheinlich macht», ist der Planetenforscher überzeugt.

Literaturhinweis

Leone G, Tackley PJ, Gerya TV, May DA, Zhu G (2014). Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy, Geophys. Res. Lett., 41, doi:externe Seite 10.1002/2014GL062261

Ähnliche Themen

JavaScript wurde auf Ihrem Browser deaktiviert