Deep Learning, vorgefertigt
Selbstfahrende Autos, automatische Erkennung von Krebszellen, Online-Übersetzer: Deep Learning machts möglich. Das ETH-Spin-off «Mirage Technologies» hat eine Deep-Learning-Plattform entwickelt, die Start-ups und Unternehmen helfen soll, ihre Produkte schneller zu entwickeln und zu optimieren.
Der Name hat etwas Märchenhaftes: Das französische Wort «Mirage» bedeutet Fata Morgana - oder Trugbild. Der Gedanke hinter dem Namen: «Was du in der virtuellen Welt siehst, ist vielleicht gar nicht echt». Das sagt der ETH-Elekrotechnik-Absolvent Igor Susmelj (27) und bezieht sich damit auf manipulierte Bilder oder Videos in sozialen Netzwerken und Plattformen wie Youtube, die uns als verwirrend echt wirkende Realitäten verkauft werden.
Seine Mission, das Echte sichtbar zu machen, stand am Anfang seines Startups. Am Programmierwettbewerb „Hackzurich“ 2018 präsentierte Susmelj mit drei Kommilitonen eine Webanwendung für die Erkennung von Fake-Videos. «Deepbusters» räumte den ersten Preis ab. Dies schien den «jungen Wilden» den Weg in die Selbständigkeit zu bahnen, sie waren in den USA unterwegs und stiessen dort auf grosses (Medien-)Interesse. Allerdings zeigte sich rasch, dass sich mit einer solchen Plattform kaum Geld machen lässt. Also passten sie ihr Geschäftsmodell an.
Vorprogrammierte AI-Bausteine
Mit seinem Deepbusters- Mitstreiter, dem ETH-Informatiker Heiki Riesenkampf, gründete Susmelj im September 2018 das Start-up «Mirage Technologies». Grundlage dafür ist das Know-how in maschinellem Lernen, das sie mit Deepbusters unter Beweis gestellt haben. Mirage verspricht neue Deep-Learning-Modelle, welche einfach zu bedienen sind. Das ETH-Spin-off stellt Entwicklern vorprogrammierte und trainierte «Rockets» zur Verfügung – in der Informatik spricht man dabei von Modellen. Diese Modelle sind in Familien unterteilt, jede kann für spezifische Problemstellungen benutzt werden, beispielsweise das Erkennen von Objekten oder die Superauflösung von Bildern – eine Methode, um niedrig aufgelöste Bildern zu vergrössern.
Die von Mirage zur Verfügung gestellten Rockets wurden einerseits mit Tausenden von Bildern trainiert, sind aber auch lernfähig. Falls kein Modell existiert, das man für eine spezifische Aufgabe benutzen kann, kann es Mirage mittels sogenanntem Transfer Learning mit zusätzlichen Daten füttern. «Da wir unser Modell nicht von Null auf trainieren müssen, brauchen wir viel weniger Daten», erklärt Susmelj. Anwender können die Rockets von Mirage dann mit einem zweizeiligen Code in ihrer bevorzugten Programmiersprache und auf verschiedenen Geräten zum Fliegen bringen.
Warum die Grossen vorne sind
Igor Susmelj und Heiki Riesenkampf sind technologische Entwicklungshelfer. Sie sorgen mit ihrem Produkt dafür, dass die Deep-Learning-Methoden niederschwellig angewendet werden können, ohne dafür auf Tech-Riesen wie Google oder Microsoft angewiesen zu sein. Diese haben in Deep Learning einen riesigen Vorsprung. Denn sie verarbeiten seit langer Zeit sehr viele Daten, mit denen sie ihre Modelle trainieren können. Für komplexe Anwendungen wie etwa die Entwicklung eines fahrerlosen Autos sind Millionen von Bildern und Tausende Stunden Video erforderlich. Zudem erfordert Deep Learning sehr viel Rechenleistung, weil die Parameter oft über mehrere Tage trainiert werden müssen. Mirage greift für seine Modelle auf Open-Source-Daten und auf Forschungsplattformen zurück.
Eine Plattform für Entdecker
Die zwei Jungunternehmer haben bisher viel Zeit, Geld und Energie in Mirage investiert – verdient haben sie damit noch nichts. Beide haben sich mit diversen Jobs über Wasser gehalten – was ganz gut funktioniert, denn: «Im Software-Bereich braucht man keine grosse Infrastruktur und ist örtlich unabhängig», sagt der Luzerner. Zudem können sie Gemeinschaftsarbeitsräume der ETH für Startups und Spin-offs zu günstigen Konditionen nutzen. Wichtiger ist Susmelj aber das Netzwerk, das sich ihm dank der ETH erschlossen hat. «Das ist extrem hilfreich», sagt er.
Natürlich möchte er dereinst den «Studentenmodus» verlassen und mit seiner Arbeit Geld verdienen. Mirage setzt zurzeit auf die Experimentierfreude von Unternehmen: «Viele Firmen möchten neue Technologien ausprobieren», sagt Susmelj. Zurzeit sind auf der Plattform grundlegende Funktionen gratis verfügbar. Auf diese Weise will sich Mirage einen Kundenkreis aufbauen, der die Lösung bekannt macht und später für neue Produkte und Dienstleistungen auch bezahlt.