Künstliche Intelligenz erforscht dunkle Materie im Universum

Ein Team aus Physikern und Informatikern der ETH Zürich hat einen neuen Zugang zum Problem der dunklen Materie und dunklen Energie im Universum entwickelt. Mit Hilfsmitteln des maschinellen Lernens programmierten sie Computer so, dass diese sich selbst beibrachten, relevante Informationen aus Himmelskarten zu gewinnen.  

Massenkarte der dunklen Materie
Ausschnitt aus einer typischen computergenerierten Massenkarte der dunklen Materie, wie sie von den Forschen zum Trainieren des neuronalen Netzwerks benutzt wird. (Bild: ETH Zürich)

Herauszufinden, wie unser Universum zu dem wurde, was es heute ist, und welches Schicksal es dereinst erwartet, ist eine der grössten Herausforderungen der Wissenschaft. Das Ehrfurcht einflössende Schauspiel ungezählter Sterne in einer klaren Nacht gibt uns eine Ahnung von der Tragweite des Problems, und doch ist das nur ein Teil der Geschichte. Das grössere Rätsel besteht in dem, was wir nicht sehen können, zumindest nicht direkt: dunkle Materie und dunkle Energie. Da dunkle Materie das Universum zusammenhält und dunkle Energie es sich ausbreiten lässt, müssen Kosmologen genau wissen, wie viel der beiden Arten es da draussen gibt, um ihre Modelle zu verfeinern.

An der ETH Zürich haben sich nun Wissenschaftler des Departements Physik und des Departements Informatik zusammengetan, um mit Hilfe von künstlicher Intelligenz die Standardmethoden zur Schätzung des Gehalts an dunkler Materie im Universum zu verbessern. Sie verwendeten dazu innovative Algorithmen für maschinelles Lernen, welche viel mit denen gemeinsam haben, die von Facebook und anderen sozialen Medien für die Gesichtserkennung benutzt werden. Ihre Ergebnisse wurden kürzlich im Fachjournal externe Seite Physical Review D veröffentlicht.

Gesichtserkennung für die Kosmologie

In Aufnahmen des Nachthimmels gibt es zwar keine Gesichter zu erkennen, doch Kosmologen suchen nach etwas ganz Ähnlichem, wie Thomas Kacprzak erklärt, der als Forscher in der Gruppe von Alexandre Refregier am Institut für Teilchenphysik und Astrophysik arbeitet: «Facebook benutzt seine Algorithmen, um in Bildern Augen, Münder oder Ohren zu finden; wir benutzten unsere, um nach den charakteristischen Anzeichen von dunkler Materie und dunkler Energie zu suchen.»

Da dunkle Materie nicht direkt in Teleskopaufnahmen sichtbar ist, vertrauen Physiker darauf, dass alle Materie – auch die dunkle Sorte – die Bahnen von Lichtstrahlen, die von fernen Galaxien auf der Erde ankommen, leicht verbiegen. Dieser Mechanismus, bekannt als «schwacher Gravitationslinseneffekt», verzerrt die Bilder der Galaxien auf subtile Weise, ganz ähnlich wie weit entfernte Objekte verschwommen aussehen, wenn das Licht an einem heissen Tag Luftschichten mit verschiedenen Temperaturen durchquert.

Kosmologen können diese Verzerrung ausnutzen und rückwärts rechnen, um so Massenkarten zu erstellen, die zeigen, wo sich dunkle Materie befindet. Anschliessend vergleichen sie diese Massenkarten der dunklen Materie mit theoretischen Vorhersagen, um dasjenige kosmologische Modell zu finden, das am besten mit den Daten übereinstimmt. Normalerweise werden dazu von Menschen entwickelte statistische Grössen wie etwa sogenannte Korrelationsfunktionen verwendet, die beschreiben, wie verschiedene Teile der Massenkarten miteinander in Bezug stehen. Solche Grössen sind allerdings nur bedingt nützlich, wenn es darum geht, komplexe Muster in den Massenkarten zu finden.

Neuronale Netzwerke lernen von allein

«In unserer neuesten Arbeit haben wir eine völlig neue Methode benutzt», sagt Alexandre Refregier. «Anstatt selbst eine geeignete statistische Analyse zu erfinden, überlassen wir diese Arbeit den Computern.» Hier nun kommen Aurélien Lucchi und seine Kollegen vom Data Analytics Lab am Departement für Informatik ins Spiel. Gemeinsam mit Janis Fluri, Doktorand in Refregiers Gruppe und Erstautor der Studie, verwendeten sie als tiefe künstliche neuronale Netzwerke bekannte Algorithmen für maschinelles Lernen und brachten ihnen bei, so viele Informationen wie möglich aus den Massenkarten der dunklen Materie herauszuholen.

Neuronales Netzwerk
Wenn das neuronale Netzwerk fertig trainiert ist, kann man es dazu benutzen, kosmologische Parameter aus echten Bildern des Nachthimmels zu berechnen. (Grafik: ETH Zürich)

In einem ersten Schritt trainierten die Wissenschaftler die neuronalen Netzwerke, indem sie sie mit computergenerierten Daten fütterten, die das Universum simulieren. Auf diese Weise kannten sie im Voraus die richtige Antwort für einen bestimmten kosmologischen Parameter – zum Beispiel das Verhältnis der gesamten dunklen Materie zur dunklen Energie – für jede der simulierten Massenkarten. Durch wiederholte Analyse der Massenkarten brachte das neuronale Netzwerk sich selbst bei, darin nach den richtigen Strukturen zu suchen und mehr und mehr der gewünschten Informationen zu extrahieren. Im Facebook-Vergleich wurde es also immer besser darin, zufällige ovale Formen von Augen oder Mündern zu unterscheiden.

Genauer als menschengemachte Analyse

Die Ergebnisse dieses Trainings waren ermutigend: Die neuronalen Netzwerke fanden Werte, die um 30 Prozent genauer waren als diejenigen, die mit herkömmlichen, auf menschengemachter Statistik basierenden Methoden erzielt wurden. Für Kosmologen ist das eine enorme Verbesserung, denn um dieselbe Genauigkeit durch mehr Teleskopaufnahmen zu erreichen, würde man die doppelte Beobachtungszeit brauchen – und die ist teuer.

Schliesslich benutzten die Wissenschaftler ihr durchtrainiertes neuronales Netzwerk, um echte Massenkarten der dunklen Materie des KiDS-450 Datensatzes zu untersuchen. «Das ist das erste Mal, das solche Werkzeuge des maschinellen Lernens in diesem Zusammenhang verwendet wurden», sagt Fluri, «und wir haben gesehen, dass das tiefe künstliche neuronale Netzwerk es uns erlaubt, mehr Informationen aus den Daten zu gewinnen als mit bisherigen Methoden. Wir glauben, dass diese Verwendung von maschinellem Lernen in der Zukunft noch viele Anwendungen haben wird.»

Als nächsten Schritt haben er und seine Kollegen vor, ihre Methode auf grössere Datensätze wie den Dark Energy Survey anzuwenden. Zudem sollen mehr kosmologische Parameter und weitere Verfeinerungen, wie etwa Details zum Wesen der dunklen Energie, in die neuronalen Netzwerke eingespeist werden.

Literaturhinweis

Fluri J, Kacprzak T, Lucchi A, Refregier A, Amara A, Hofmann T, Schneider A: Cosmological constraints with deep learning from KiDS-450 weak lensing maps. Physical Review D. 100: 063514, doi: externe Seite 10.1103/PhysRevD.100.063514

Kommentare

Kommentar schreiben

Kommentar schreiben

Wir freuen uns, wenn Sie an dieser Stelle Artikel aus den ETH-Newskanälen kommentieren, Fragen stellen oder auch auf Kommentare anderer Leserinnen und Leser reagieren. Bitte beachten Sie dabei unsere Kommentarregeln.

Noch keine Kommentare